
Cement Framework
Release 2.10.12

Data Folk Labs, LLC

Jul 31, 2018

Contents

1 Getting More Information 3

2 Mailing List 5

3 Documentation 7

Python Module Index 207

i

ii

Cement Framework, Release 2.10.12

Cement is an advanced CLI Application Framework for Python. Its goal is to introduce a standard, and feature-
full platform for both simple and complex command line applications as well as support rapid development needs
without sacrificing quality. Cement is flexible, and it’s use cases span from the simplicity of a micro-framework to the
complexity of a mega-framework. Whether it’s a single file script, or a multi-tier application, Cement is the foundation
you’ve been looking for.

The first commit to Git was on Dec 4, 2009. Since then, the framework has seen several iterations in design, and has
continued to grow and improve since it’s inception. Cement is the most stable, and complete framework for command
line and backend application development.

Extension handler interface to easily extend framework functionality

Config handler supports parsing multiple config files into one config

Argument handler parses command line arguments and merges with config

Log handler supports console and file logging

Plugin handler provides an interface to easily extend your application

Hook support adds a bit of magic to apps and also ties into framework

Handler system connects implementation classes with Interfaces

Output handler interface renders return dictionaries to console

Cache handler interface adds caching support for improved performance

Controller handler supports sub-commands, and nested controllers

Zero external dependencies* of the core library

100% test coverage using nose and coverage

100% PEP8 and style compliant using flake8

Extensive Sphinx documentation

Tested on Python 2.6, 2.7, 3.3, 3.4, 3.5

Note that argparse is required as an external dependency for Python < 2.7 and < 3.2. Additionally, some optional
extensions that are shipped with the mainline Cement sources do require external dependencies. It is the responsibility
of the application developer to include these dependencies along with their application if they intend to use any
optional extensions that have external dependencies, as Cement explicitly does not include them.

Contents 1

https://travis-ci.org/#!/datafolklabs/cement

Cement Framework, Release 2.10.12

2 Contents

CHAPTER 1

Getting More Information

• DOCS: http://builtoncement.com/2.10/

• CODE: http://github.com/datafolklabs/cement/

• PYPI: http://pypi.python.org/pypi/cement/

• SITE: http://builtoncement.com/

• T-CI: http://travis-ci.org/datafolklabs/cement

• HELP: cement@librelist.org - #cement - gitter.im/datafolklabs/cement

3

http://builtoncement.com/2.10/
http://github.com/datafolklabs/cement/
http://pypi.python.org/pypi/cement/
http://builtoncement.com/
http://travis-ci.org/datafolklabs/cement
mailto:cement@librelist.org

Cement Framework, Release 2.10.12

4 Chapter 1. Getting More Information

CHAPTER 2

Mailing List

Sign up for the Cement Framework mailing list to recieve updates regarding new releases, important features, and
other related news. This not an open email thread, but rather an extremely minimal, low noise announcement only list.
You can unsubscribe at any time.

5

Cement Framework, Release 2.10.12

6 Chapter 2. Mailing List

CHAPTER 3

Documentation

3.1 ChangeLog

All bugs/feature details can be found at:

https://github.com/datafolklabs/cement/issues/XXXXX

Where XXXXX is the ‘Issue #’ referenced below. Additionally, this change log is available online at:

http://builtoncement.com/2.8/changes/

See the Upgrading section for more information related to any incompatible changes, and how to update your appli-
cation to fix them. Also check out the What’s New section for details on new features.

3.1.1 2.10.6-12 - Sat Apr 28, 2018

• Bumping version(s) trying to update PyPi Description to Markdown

3.1.2 2.10.4 - Fri Apr 13, 2018

Bugs:

• Issue #401 - Can’t get user in daemon extension

• Issue #397 - Removes deprecated warn from ILog validator, in-favor of warning

• Issue #401 - Can’t get user in daemon extension

• Issue #415 - FrameworkError when reusing CementApp object

Features:

• None

Refactoring:

• None

7

https://github.com/datafolklabs/cement/issues/XXXXX
http://builtoncement.com/2.8/changes/
https://github.com/datafolklabs/cement/issues/401
https://github.com/datafolklabs/cement/issues/397
https://github.com/datafolklabs/cement/issues/401
https://github.com/datafolklabs/cement/issues/415

Cement Framework, Release 2.10.12

Incompatible:

• None

Deprecation:

• None

3.1.3 2.10.2 - Thu July 14, 2016

Bumping version due to issue with uploading to PyPi.

3.1.4 2.10.0 - Thu July 14, 2016

Bugs:

• Issue #363 - CementTestCase does not delete temporary files/directories

• Issue #346 - AttributeError: ‘module’ object has no attribute ‘SIGHUP’ on Windows

• Issue #352 - CementApp.extend() breaks on CementApp.reload()

• Issue #366 - Output handler override options dissappear

• Issue #385 - JsonOutputHandler/YamlOutputHandler/MustacheOutputHandler Do not pass keyword args down
to backend render functions

• Issue #393 - CementApp.Meta.hooks ignored for hooks defined by extensions

Features:

• Issue #350 - Support for plugin directories

• Issue #370 - Handlebars templating support

• PR #371 - Jinja2 templating support

• Issue #373 - Switch over to using Flake8 for PEP8 and style compliance

• PR #375 - Redis cache handler support

• Issue #379 - Support for alternative config file extensions

• Issue #380 - Support for Cython/Compiled Plugins

• Issue #389 - ConfigObj support for Python 3

• Issue #394 - Watchdog extension for cross-platform filesystem event monitoring

• Issue #395 - Ability to pass metadata keyword arguments to handlers via CementApp.Meta.
meta_defaults.

Refactoring;

• Issue #386 - Partially deprecated use of imp in favor of importlib on Python >= 3.1

• Issue #390 - ArgparseArgumentHandler should store unknown arguments

Incompatible:

• None

Deprecation:

• Issue #365 - Deprecated LoggingLogHandler.warn()

8 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/363
https://github.com/datafolklabs/cement/issues/346
https://github.com/datafolklabs/cement/issues/352
https://github.com/datafolklabs/cement/issues/366
https://github.com/datafolklabs/cement/issues/385
https://github.com/datafolklabs/cement/issues/393
https://github.com/datafolklabs/cement/issues/350
https://github.com/datafolklabs/cement/issues/370
https://github.com/datafolklabs/cement/pull/371
https://github.com/datafolklabs/cement/issues/373
https://github.com/datafolklabs/cement/pull/375
https://github.com/datafolklabs/cement/issues/379
https://github.com/datafolklabs/cement/issues/380
https://github.com/datafolklabs/cement/issues/389
https://github.com/datafolklabs/cement/issues/394
https://github.com/datafolklabs/cement/issues/395
https://github.com/datafolklabs/cement/issues/386
https://github.com/datafolklabs/cement/issues/390
https://github.com/datafolklabs/cement/issues/365

Cement Framework, Release 2.10.12

• Issue #372 - Deprecated Explicit Python 3.2 Support

• Issue #376 - Deprecated cement.core.interface.list()

3.1.5 2.8.0 - Wed Feb 24, 2016

Bugs:

• Issue #310 - Resolved issue where console/file logs had duplicate entries under certain circumstances.

• Issue #314 - Resolved inconsistent behavor in colorlog extension.

• Issue #316 - Running Nose tests with -s option causes traceback

• Issue #317 - Calling CementApp.run() should return results from Controller._dispatch()

• Issue #320 - Partials not rendering with Mustache templates

• Issue #325 - Wrap Utility Doesn’t Support Unicode

• Issue #328 - Post Run Hook Not Executing

• Issue #331 - KeyError: ‘USER’ When Running Nose Tests

• Issue #338 - Support non-ascii encoding for email subject and body

Features:

• Issue #205 - Added new ArgparseController and expose decorator in ext_argparse to eventually
replace CementBaseController.

• Issue #299 - Added Argcomplete Framework Extension

• Issue #322 - Added Tabulate Framework Extension (tabulatized output)

• Issue #336 - Added Support for CementApp.reload() (SIGHUP)

• Issue #337 - Added app.run_forever() alternative run method.

• Issue #342 - Added Alarm/Timeout Support

• Issue #343 - Memcached Extension/Pylibmc Now Supports Python 3

Refactoring:

• Issue #311 - Refactor Hooks/Handlers into CementApp

• Issue #319 - Use os.devnull instead of internal NullOut hack.

Incompatible:

• Issue #311 - Hook signal now requires app argument.

• Issue #313 - Default Cement.Meta.exit_on_close to False. Calls to sys.exit() should be explicit
by the app developer, and not implied by the framework.

• Issue #332 - Output Handler Interface Must Support Keyword Arguments

3.1.6 2.6.0 - Thu May 14, 2015

Bugs:

3.1. ChangeLog 9

https://github.com/datafolklabs/cement/issues/372
https://github.com/datafolklabs/cement/issues/376
https://github.com/datafolklabs/cement/issues/310
https://github.com/datafolklabs/cement/issues/314
https://github.com/datafolklabs/cement/issues/316
https://github.com/datafolklabs/cement/issues/317
https://github.com/datafolklabs/cement/issues/320
https://github.com/datafolklabs/cement/issues/325
https://github.com/datafolklabs/cement/issues/328
https://github.com/datafolklabs/cement/issues/331
https://github.com/datafolklabs/cement/issues/338
https://github.com/datafolklabs/cement/issues/205
https://github.com/datafolklabs/cement/issues/299
https://github.com/datafolklabs/cement/issues/322
https://github.com/datafolklabs/cement/issues/336
https://github.com/datafolklabs/cement/issues/337
https://github.com/datafolklabs/cement/issues/342
https://github.com/datafolklabs/cement/issues/343
https://github.com/datafolklabs/cement/issues/311
https://github.com/datafolklabs/cement/issues/319
https://github.com/datafolklabs/cement/issues/311
https://github.com/datafolklabs/cement/issues/313
https://github.com/datafolklabs/cement/issues/332

Cement Framework, Release 2.10.12

• Issue #294 - Added work-around for scenario where an app wants to support arbitrary positional argument with
a value of default. By default, this will attempt to explicitly call the default command rather than using
default as the argument. This fix adds CementBaseController.Meta.default_func allowing the
developer to override the name of the default function that is called if no matching sub-command is passed.

Features:

• Issue #197 - Added support for colorized logging.

• Issue #281 - Added support for Python with statement.

• Issue #282 - Added support to define/register hooks and handlers via CementApp.Meta.

• Issue #290 - Added ability to disable Cement framework logging via CementApp.Meta.
framework_logging = False.

• Issue #297 - Added experimental support for reloading configurations anytime config files and/or plugin config
files are modified. Optional extension ext_reload_config.

Incompatible:

• Issue #308 - No longer require explicit CementApp.Meta.base_controller if a controller with
the label of base is registered. This is potentially backward in-compatible in that previously
CementBaseController.Meta.label defaulted to base. It now defaults to None, which makes more
sense but will break for any controllers that have not explicitly set a label of base.

3.1.7 2.4.0 - Wed Sep 17, 2014

Bugs:

• Issue #211 - LoggingLogHandler namespace causes issues (regression)

• Issue #235 - Duplicate Config Section when plugin already loaded

• Issue #246 - Plugin extension does not disable after already being enabled

Features:

• Issue #119 - Added cement.utils.shell.Prompt to quickly gather user input in several different ways.

• Issue #182 - Added a mail interface with basic implementations of ‘dummy’ (just prints message to console)
and ‘smtp’

• Issue #229 - Ability to override handlers via command line options. Also related: Issue #225.

• Issue #248 - Added documentation for BASH Auto-Completion example.

• Issue #249 - Allow utils.shell.exec_cmd* to accept additional. parameters, passing all args and kwargs down to
subprocess.Popen. Allows features such as changing the current working directory, and setting a timeout value,
etc (everything that Popen supports).

• Issue #257 - CementBaseController._dispatch() should return result of controller function.

• Issue #259 - Add yaml and yaml_configobj config handlers.

• Issue #262 - Add json and json_configobj config handlers.

• Issue #267 - Add support for multiple plugin_dirs and plugin_config_dirs

• Issue #269 - Allow app.close() to accept an exit code, and exit with that code.

• Issue #270 - Add support for multiple template_dirs

• Issue #274 - Add cement.core.interface.list function

10 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/294
https://github.com/datafolklabs/cement/issues/197
https://github.com/datafolklabs/cement/issues/281
https://github.com/datafolklabs/cement/issues/282
https://github.com/datafolklabs/cement/issues/290
https://github.com/datafolklabs/cement/issues/297
https://github.com/datafolklabs/cement/issues/308
https://github.com/datafolklabs/cement/issues/211
https://github.com/datafolklabs/cement/issues/235
https://github.com/datafolklabs/cement/issues/246
https://github.com/datafolklabs/cement/issues/119
https://github.com/datafolklabs/cement/issues/182
https://github.com/datafolklabs/cement/issues/229
https://github.com/datafolklabs/cement/issues/225
https://github.com/datafolklabs/cement/issues/248
https://github.com/datafolklabs/cement/issues/249
https://github.com/datafolklabs/cement/issues/257
https://github.com/datafolklabs/cement/issues/259
https://github.com/datafolklabs/cement/issues/262
https://github.com/datafolklabs/cement/issues/267
https://github.com/datafolklabs/cement/issues/269
https://github.com/datafolklabs/cement/issues/270
https://github.com/datafolklabs/cement/issues/274

Cement Framework, Release 2.10.12

• Issue #275 - Added examples/ directory with working examples based on Examples section of the documenta-
tion.

Incompatible:

• Issue #227 - Standardize handler config section naming conventions. All handler config sections are now labeled
after interface.handler (i.e. output.json, or mail.sendgrid, etc).

• Issue #229 - Handler override options deprecate the use of --json, and --yaml output handler options.

• Issue #260 - Extensions/Plugins/Bootstrap modules must accept app argument in load() function. See Upgrading
doc for more information.

3.1.8 2.2.0 - Wed Jan 29, 2014

Bugs:

• Issue #211 - LoggingLogHandler namespace causes issues

• Issue #215 - Epilog not printed on –help

Features:

• Issue #209 - Added app.debug property to allow developers to know if –debug was passed at command line of
via the config

• Issue #219 - Merged ext.memcached into mainline

• Issue #222 - Merged ext.configobj into mainline

• Issue #223 - Merged ext.genshi into mainline

• Issue #224 - Merged ext.yaml into mainline

Incompatible:

• Issue #202 - Deprecated namespace packaging for cement and cement.ext. Resolves issues with certain IDE’s
and other situations where the lack of a proper __init__.py causes issues. This change means that external
extensions can no longer share the cement.ext module namespace, and must have it’s own unique module
path.

Misc:

• Official Git repo relocated to: http://github.com/datafolklabs/cement

3.1.9 2.1.4 - Tue Oct 29, 2013

Bugs:

• Issue #191 - KeyError when using minimal logger with –debug

• Issue #199 - Moved post_argument_parsing hook down, after arguments_override_config logic happens.

• Issue #204 - utils.misc.wrap should handle None type

• Issue #208 - LoggingLogHandler does not honor Meta.config_section

Features:

• Issue #190 - Merged daemon extension into core

• Issue #194 - Added pre_argument_parsing/post_argument_parsing hooks

• Issue #196 - Added utils.misc.wrap

3.1. ChangeLog 11

https://github.com/datafolklabs/cement/issues/275
https://github.com/datafolklabs/cement/issues/227
https://github.com/datafolklabs/cement/issues/229
https://github.com/datafolklabs/cement/issues/260
https://github.com/datafolklabs/cement/issues/211
https://github.com/datafolklabs/cement/issues/215
https://github.com/datafolklabs/cement/issues/209
https://github.com/datafolklabs/cement/issues/219
https://github.com/datafolklabs/cement/issues/222
https://github.com/datafolklabs/cement/issues/223
https://github.com/datafolklabs/cement/issues/224
https://github.com/datafolklabs/cement/issues/202
http://github.com/datafolklabs/cement
https://github.com/datafolklabs/cement/issues/191
https://github.com/datafolklabs/cement/issues/199
https://github.com/datafolklabs/cement/issues/204
https://github.com/datafolklabs/cement/issues/208
https://github.com/datafolklabs/cement/issues/190
https://github.com/datafolklabs/cement/issues/194
https://github.com/datafolklabs/cement/issues/196

Cement Framework, Release 2.10.12

• Issue #200 - Merged ext.mustache into mainline.

• Issue #203 - Added support for external template directory

• Issue #207 - Added support for alternative ‘display’ name for stacked controllers

Incompatible:

• Issue #163 - LoggingLogHandler.Meta.clear_loggers was changed from a boolean option, to a list. Addition-
ally, LoggingLogHandler.clear_loggers() now requires a namespace argument. ILog interface no longer defines
clear_loggers() as a required function (though ILog interfaces are welcome to implement one if necessary).

• Issue #173 - Deprecated ‘has_key()’ from configparser extension

• Issue #201 - Add Deprecation Warning for CementApp.get_last_rendered()

3.1.10 2.1.2 - Thu Nov 1st, 2012

This is a branch off of the 2.0.x stable code base. Maintenance releases for 2.0.x will happen under the stable/2.0.x git
branch, while forward feature development will happen here under as 2.1.x under the git master branch.

Bugs:

• Issue #162 - Unable to set log ‘level’ by config

• Issue #167 - Non-stacked controllers not listed in –help

• Issue #169 - Fixed tests.utils.shell_tests timeout issue

• Issue #171 - No handlers could be found for logger

• Issue #183 - os.environ[‘HOME’] does not exist on Windows

Features:

• Issue #161 - Ability to override usage

• Issue #164 - Store previously rendered data as app._last_rendered, and retrievable by app.get_last_rendered().

• Issue #165 - Allow utils.fs.backup() to support a suffix kwarg

• Issue #166 - Ability to set the ‘app’ for CementTestCase.make_app()

• Issue #170 - Added support for nested and embedded controllers.

Misc:

• Issue #172 - 100% PEP8 Compliant

• Issue #160 - Refactor CementApp._resolve_handler() as handler.resolve()

Deprecation Notices:

• Issue #173 - ConfigParserConfigHandler.has_key() is now deprecated, and will be removed in future versions.
Please use if key in app.config.keys(section) instead.

Incompatible Changes:

• Issue #141 - Removed shortcuts from CementBaseController (such as log, pargs, etc). Use self.app.<shortcut>
instead.

• Issue #167 - Listed above, in order to fix this issue as well as restrict future issues we implemented a hard
requirement that all base controllers have the label ‘base’. This should not be a major change for anyone using
Cement 2.0.x as it is a simple 1 line change in any one application. As all documentation encourages the use of
the label ‘base’ it should not be a wide spread incompatibility.

12 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/200
https://github.com/datafolklabs/cement/issues/203
https://github.com/datafolklabs/cement/issues/207
https://github.com/datafolklabs/cement/issues/163
https://github.com/datafolklabs/cement/issues/173
https://github.com/datafolklabs/cement/issues/201
https://github.com/datafolklabs/cement/issues/162
https://github.com/datafolklabs/cement/issues/167
https://github.com/datafolklabs/cement/issues/169
https://github.com/datafolklabs/cement/issues/171
https://github.com/datafolklabs/cement/issues/183
https://github.com/datafolklabs/cement/issues/161
https://github.com/datafolklabs/cement/issues/164
https://github.com/datafolklabs/cement/issues/165
https://github.com/datafolklabs/cement/issues/166
https://github.com/datafolklabs/cement/issues/170
https://github.com/datafolklabs/cement/issues/172
https://github.com/datafolklabs/cement/issues/160
https://github.com/datafolklabs/cement/issues/173
https://github.com/datafolklabs/cement/issues/141
https://github.com/datafolklabs/cement/issues/167

Cement Framework, Release 2.10.12

• Issue #179 - CementBaseController hidden, visible, and exposed have been removed, and replaced by other
private means of managing the dispatch of commands.

• CementBaseController no longer implements a default command.

• Issue #177 - Renamed several cement.core.backend pieces including: handlers -> __handlers__, hooks ->
__hooks__, SAVED_STDOUT -> __saved_stdout__, and SAVED_STDERR -> __saved_stderr__.

• Issue #178 - Moved backend.defaults() to utils.misc.init_defaults(), and backend.minimal_logger() to
utils.misc.minimal_logger()

3.1.11 2.0.0 - Fri Aug 03, 2012

This is the initial stable release of the 2.0.x branch. Future releases of this branch will include bug/security fixes and
minor feature updates. Forward moving feature development will continue out of the 2.1.x branch.

Bugs:

• Issue #143 - Incorrect doc regarding logging. The LoggingLogHandler now supports an optional ‘namespace’
argument allowing the developer to override the log prefix.

• Issue #150 - foundation.CementApp.Meta.argv now defaults to None, but is overridden in __init__() with
sys.argv if no other argv is passed as meta.

Features:

• Issue #138 - Added ‘shell’ argument to utils.shell.exec_cmd() and utils.shell.exec_cmd2().

• Issue #140 - Included ~/.myapp/config in default config search

• Issue #144 - Added a note on Contributing, as well as a CONTRIBUTORS file.

• Issue #152 - Added ‘argument_formatter’ to ControllerBaseClass.Meta.

• Issue #153 - Added spawn_process() and spawn_thread() to utils.shell.

Incompatible Changes:

• Issue #100 - Interfaces audit.

– ILog.level() redefined as ILog.get_level()

– IPlugin.loaded_plugins attribute redefined as IPlugin.get_loaded_plugins()

– IPlugin.enable_plugins attribute redefined as IPlugin.get_enabled_plugins()

– IPlugin.disabled_plugins attribute redefined as IPlugin.get_disabled_plugins()

• Issue #145 - The IArgument interface no longer specifies that the parsed_args be maintained by the handler
implementation. This means that app.args.parsed_args is no longer available, however app.pargs functions just
the same as it points to app._parsed_args.

• Issue #148 - The CementExtensionHandler.loaded_extensions property is now a callable at CementExten-
sionHandler.get_loaded_extensions().

• Issue #151 - Removed all previously deprecated code including:

– Removed CementApp.Meta.defaults, and CementBaseHandler.Meta.defaults. Now use con-
fig_defaults instead.

– Removed cement.foundation.lay_cement(). Now use CementApp directly.

– Removed cement.handler.enabled(). Now use handler.registered() instead.

• Issue #154 - Validate for handler config_defaults and config_section by default. Only incompatible if not previ-
ously sub-classing from handler.CementBaseHandler.

3.1. ChangeLog 13

https://github.com/datafolklabs/cement/issues/179
https://github.com/datafolklabs/cement/issues/177
https://github.com/datafolklabs/cement/issues/178
https://github.com/datafolklabs/cement/issues/143
https://github.com/datafolklabs/cement/issues/150
https://github.com/datafolklabs/cement/issues/138
https://github.com/datafolklabs/cement/issues/140
https://github.com/datafolklabs/cement/issues/144
https://github.com/datafolklabs/cement/issues/152
https://github.com/datafolklabs/cement/issues/153
https://github.com/datafolklabs/cement/issues/100
https://github.com/datafolklabs/cement/issues/145
https://github.com/datafolklabs/cement/issues/148
https://github.com/datafolklabs/cement/issues/151
https://github.com/datafolklabs/cement/issues/154

Cement Framework, Release 2.10.12

• Issue #157 - CementRuntimeError renamed as FrameworkError

• Issue #158 - CementSignalError renamed as CaughtSignal

• Issue #159 - CementInterfaceError renamed as InterfaceError

Misc:

• Issue #155 - Removed unused CementArgumentError, and CementConfigError. These types of exceptions
should be defined at the application level.

3.1.12 1.9.14 - Sun Jul 16, 2012

Bugs:

• Issue #127 - Inherited positional arguments listed multiple times

Feature Enhancements:

• Issue #131 - Controller aliases

• Issue #126 - Add a ‘bootstrap’ importer to CementApp

• Added cement.utils.test.CementTestCase for improved testing.

Incompatible Changes:

• Issue #129 - Simplify extensions/plugins/hooks/etc.

– Hooks renamed from ‘cement_xxx_hook’ to just ‘xxx’. For example, the ‘cement_pre_setup_hook’
is now simply ‘pre_setup’. Additionally, the ‘cement_on_close_hook’ is now broken out into
‘pre_close’, and ‘post_close’.

– The cement.core.hooks.register decorator was replaced with a simple function of the same name.
New usage is: register(‘hook_name’, hook_func).

– Plugins, extensions, and the application bootstrap now attempt to call a ‘load()’ function, meaning
library code and loading code can live in the same file (i.e. hooks won’t be registered just because
you imported an extension to sub-class a handler, etc).

• cement.utils.test_helper moved to cement.utils.test.

• By default, command line arguments no longer override config settings. This is now configurable by the Ce-
mentApp.Meta.arguments_override_config boolean. Related: Issue #136.

3.1.13 1.9.12 - Thu Jul 05, 2012

Bugs:

• Fixed version mis-hap in setup.py

3.1.14 1.9.10 - Wed Jul 04, 2012

Feature Enhancements:

• Issue #118 - Added utils.fs.backup() to safely backup files/dirs.

Misc:

• Issue #111 - Use relative imports (makes cement more portable as it can be included and distributed with 3rd
party sources).

14 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/157
https://github.com/datafolklabs/cement/issues/158
https://github.com/datafolklabs/cement/issues/159
https://github.com/datafolklabs/cement/issues/155
https://github.com/datafolklabs/cement/issues/127
https://github.com/datafolklabs/cement/issues/131
https://github.com/datafolklabs/cement/issues/126
https://github.com/datafolklabs/cement/issues/129
https://github.com/datafolklabs/cement/issues/136
https://github.com/datafolklabs/cement/issues/118
https://github.com/datafolklabs/cement/issues/111

Cement Framework, Release 2.10.12

• Issue #120 - Use standard json rather than relying on jsonpickle

Incompatible Changes:

• core.util.abspath moved to utils.fs.abspath

• core.util.is_true moved to utils.misc.is_true

• Namespace reverted from ‘cement2’ back to ‘cement’.

• The following extensions have been removed from the cement source tree, and are now available externally (see:
http://github.com/cement): daemon, memcached, configobj, yaml, genshi.

3.1.15 1.9.8 - Thu May 3, 2012

Feature Enhancements:

• Issue #95 - Add a ‘config_section’ Meta default for all handlers. Required to parse config options for a handler.

• Issue #97 - Add a standard cache handler interface.

• Issue #105 - Add ‘meta_override’ and ‘core_meta_override’ list to CementApp().Meta. Also resolves Issue
#104.

• Issue #108 - Add CementApp.extend() functionality.

• Issue #109 - Add cement.ext.memcached extension

Incompatible Changes:

• Issue #103 - plugin_bootstrap_module renamed as plugin_bootstrap.

• Issue #106 - Deprecate Meta.defaults in favor of Meta.config_defaults

• Issue #107 - Make the app name the default config section, not [base]

3.1.16 1.9.6 - Wed Apr 18, 2012

Bug Fixes:

• Issue #89 - Secondary controllers display under other controllers

• Issue #90 - Logging to file doesn’t expand ‘~’

• Issue #91 - Logging to file doesn’t create basedir

Feature Enhancements:

• Issue #88 - Add cement.ext.genshi extension, provides Genshi Text Templating Launguage support.

• Issue #93 - Add epilog support for CementBaseController.

Refactoring:

• Issue #87 - Refactor Meta handling

Incompatible Changes:

• Issue #96 - Move ‘setup()’ functions to ‘_setup()’

• Moved CementBaseController.dispatch() to _dispatch()

• Moved CementBaseController.usage_text to _usage_text()

• Moved CementBaseController.help_text to _help_text()

3.1. ChangeLog 15

https://github.com/datafolklabs/cement/issues/120
http://github.com/cement
https://github.com/datafolklabs/cement/issues/95
https://github.com/datafolklabs/cement/issues/97
https://github.com/datafolklabs/cement/issues/105
https://github.com/datafolklabs/cement/issues/104
https://github.com/datafolklabs/cement/issues/104
https://github.com/datafolklabs/cement/issues/108
https://github.com/datafolklabs/cement/issues/109
https://github.com/datafolklabs/cement/issues/103
https://github.com/datafolklabs/cement/issues/106
https://github.com/datafolklabs/cement/issues/107
https://github.com/datafolklabs/cement/issues/89
https://github.com/datafolklabs/cement/issues/90
https://github.com/datafolklabs/cement/issues/91
https://github.com/datafolklabs/cement/issues/88
https://github.com/datafolklabs/cement/issues/93
https://github.com/datafolklabs/cement/issues/87
https://github.com/datafolklabs/cement/issues/96

Cement Framework, Release 2.10.12

• backend.defaults() no longer accepts an app name as an argument.

• foundation.lay_cement() is deprecated. Use foundation.CementApp() directly.

• No longer pass anything but ‘app’ object to handlers _setup() functions.

• handler.enabled() is deprecated. Use handler.registered().

3.1.17 1.9.4 - Wed Dec 21, 2011

Bug Fixes:

• Issue #73 - Hooks broken in Python 3

• Issue #81 - Controller defaults should be processed before base controller.setup()

Feature Enhancements:

• Issue #65 - Added ‘daemon’ extension. Process is daemonized by passing the ‘–daemon’ option. Handles
switching the run user/group, as well as managing a pid file.

• Issue #72 - Added new framework hooks.

• Issue #76 - Added app.close() functionality including a cement_on_close_hook() allowing plug-
ins/extensions/etc to be able to cleanup on application exit.

• Issue #77 - Added default signal handler for SIGINT/SIGTERM as well as the cement_signal_hook which is
called when any catch_signals are encountered.

• Issue #78 - Added cement_pre_render_hook, and cement_post_render_hook allowing developers to control the
data that is rendered to console.

• Issue #84 - Ability to run all tests from utils/run_tests.sh

Incompatible Changes:

• Issue #72 - The framework hooks ‘cement_add_args_hook’ and ‘cement_validate_config’ were removed in
favor of the new pre/post setup and run hooks.

• Issue #82 - Change ‘meta’ classes to Python-proper ‘Meta’, and interfaces to use ‘IMeta’. Old functionality will
be completely removed before Cement stable release.

3.1.18 1.9.2 - Wed Nov 02, 2011

This is an initial beta release of Cement, and therefore no bugs or features are listed. Future releases will detail all
changes.

3.2 License

Copyright (c) 2009-2016 Data Folk Labs, LLC All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

16 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/73
https://github.com/datafolklabs/cement/issues/81
https://github.com/datafolklabs/cement/issues/65
https://github.com/datafolklabs/cement/issues/72
https://github.com/datafolklabs/cement/issues/76
https://github.com/datafolklabs/cement/issues/77
https://github.com/datafolklabs/cement/issues/78
https://github.com/datafolklabs/cement/issues/84
https://github.com/datafolklabs/cement/issues/72
https://github.com/datafolklabs/cement/issues/82

Cement Framework, Release 2.10.12

• Neither the name of Data Folk Labs, LLC. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

3.3 Contributors

The following people have contributed to Cement, either by way of source code, documentation, or testing.

• BJ Dierkes (derks) - Creator, Primary Maintainer

• Kyle Rockman (rocktavious)

• Tomasz Czyż (spinus)

• Ildar Akhmetgaleev (akhilman)

• Nicolas Brisac (zacbri)

3.4 Upgrading

This section outlines any information and changes that might need to be made in order to update your application built
on previous versions of Cement.

3.4.1 Upgrading from 2.8.x to 2.9.x

Cement 2.9 introduces a few incompatible changes from the previous 2.8 stable release, as noted in the ChangeLog.

Deprecated: cement.core.interface.list()

This function should no longer be used in favor of CementApp.handler.list_types(). It will continue to
work throughout Cement 2.x, however is not compatible if CementApp.Meta.use_backend_globals ==
False.

Related:

• Issue #366

• Issue #376

3.4.2 Upgrading from 2.6.x to 2.8.x

Cement 2.8 introduced a few incompatible changes from the previous 2.6 stable release, as noted in the ChangeLog.

3.3. Contributors 17

https://github.com/datafolklabs/cement/issues/366
https://github.com/datafolklabs/cement/issues/376

Cement Framework, Release 2.10.12

TypeError: my_signal_hook() takes exactly 2 arguments (3 given)

In Cement 2.6, functions registered to the signal hook were only expected/required to accept the signum and
frame arguments, however signal hook functions must now also accept the app object as an argument as well.

After upgrading to Cement 2.8, you might receive something similar to the following exception:

TypeError: my_signal_hook() takes exactly 2 arguments (3 given)

The fix is to simply prefix any signal hook functions with an app argument.

For example:

def my_signal_hook(signum, frame):
pass

Would need to be:

def my_signal_hook(app, signum, frame):
pass

Related:

• Issue #311

TypeError: render() got an unexpected keyword argument

In Cement 2.6, output handlers were not required to accept **kwargs, however this is now required to allow appli-
cations to mix different types of output handlers together that might support different features/usage.

After upgrading to Cement 2.8, you might receive something similar to the following exception:

TypeError: render() got an unexpected keyword argument

This would most likely be the case because you have created your own custom output handler, or are using a third-
party output handler that has not been updated to support Cement 2.8 yet. The fix is to simply add **kwargs to the
end of the render() method.

For example:

def render(self, data):
pass

Would need to be:

def render(self, data, **kwargs):
pass

CementApp.Meta.exit_on_close Defaults to False

In Cement 2.6, the feature to call sys.exit()when app.close() is called was implemented, however defaulting
it to True is not the ideal behavior. The default is now False, making it the developers option to explicitly enable it.

To revert the change, and default exit_on_close to True, simply set it in CementApp.Meta.
exit_on_close:

18 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/311

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
exit_on_close = True

3.4.3 Upgrading from 2.4.x to 2.6.x

Cement 2.6 introduced a few incompatible changes from the previous 2.4 stable release, as noted in the ChangeLog.

InterfaceError: Invalid handler . . . missing ‘_meta.label’.

Prior to Cement 2.5.2, CementBaseController.Meta.label defaulted to base. The new default is None,
causing the potential for breakage of a controller that did not explicity set the label meta option.

You can resolve this error by explicity setting the label meta option:

class MyBaseController(CementBaseController):
class Meta:

label = 'base'

3.4.4 Upgrading from 2.2.x to 2.4.x

Cement 2.4 introduced a few incompatible changes from the previous 2.2 stable release, as noted in the ChangeLog.

Related:

• Issue #308

CementApp.render() Prints Output Without Calling print()

Before Cement 2.3.2 the app.render() function did not actually print anything, therefore you would have to call
print app.render(). This now defaults to writing output to sys.stdout, but can be modified for the older
behavior by passing out=None when calling it:

app.render(data, out=None)

Additionally, you can also now write directly to a file:

myfile = open('/path/to/myfile', 'w')
app.render(data, out=myfile)
myfile.close()

error: unrecognized arguments: –json/–yaml

After upgrading to Cement > 2.3.2 you might encounter the error:

error: unrecognized arguments: --json

Or similar errors like:

3.4. Upgrading 19

https://github.com/datafolklabs/cement/issues/308

Cement Framework, Release 2.10.12

error: unrecognized arguments: --yaml

This is due to a design change, and a new feature allowing the end user to optionally override handlers via command
line. Rather than having a unique option for every type of output handler, you now have one option that allows
overriding the defined output handler by passing it the handler label.

Note that only handlers that have overridable = True in their meta-data will be valid options.

To resolve this issue, you simply need to pass -o json or -o yaml at command line to override the default output
handler.

Related:

• Issue #229

NoSectionError: No section: ‘log’

After upgrading to Cement > 2.3.2 you might encounter the error:

NoSectionError: No section: 'log'

In previous versions of Cement < 2.3.2, the default logging configuration section in the config file was [log]. This
has been changed to [log.logging] in order to be consistent with all other handler configuration sections.

Another issue you might encounter due to the above change is that log related configuration settings read from a
configuration file would no longer work. The necessary change to resolve this issue is to change all references of log
in relation to the log configuration section, to log.logging.

Related:

• Issue #227

TypeError: load() takes no arguments (1 given)

After upgrading to Cement > 2.3.2 you might encounter the error:

TypeError: load() takes no arguments (1 given)

Previous versions of Cement < 2.3.2 did not require an app argument to be passed to the load() functions of ex-
tensions/plugins/bootstrap modules. In Cement > 2.3.2 all extension/plugins/bootstrap modules must accept a single
argument named app which is the application object in its current state when load() is called.

To resolve this issue simply modify all relevant load() functions to accept the app argument. For example:

def load():
pass

To:

def load(app):
pass

3.4.5 Upgrading from 2.0.x to 2.2.x

Cement 2.2 introduced a few incompatible changes from the previous 2.0 stable release, as noted in the Changelog.

20 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/229
https://github.com/datafolklabs/cement/issues/227

Cement Framework, Release 2.10.12

ImportError: cannot import name version

When attempting to install Cement > 2.1 on a system that already has an older version of Cement < 2.1 you will likely
run into this error:

ImportError: cannot import name version

Currently we do not have a way to resolve this programatically in Cement. The resolution is to remove the older
version of Cement < 2.1, and then re-install the newer version.

Related:

• Issue #237

FrameworkError: Duplicate Arguments/Commands

After upgrading, you might encounter one or both of the following errors related to application controllers:

cement.core.exc.FrameworkError: Duplicate command named 'mycommand' found
in controller '<__main__.MySecondController object at 0x10669ab50>'

cement.core.exc.FrameworkError: argument -f/--foo: conflicting option
string(s): -f, --foo

This is likely due to a change in how application controllers are configured. By default, all controllers are of type
embedded, meaning that their arguments and commands are added to the parent controller. To resolve this issue you
can change the stacked_type to nested, meaning that the stacked controller will be an additional sub-command under
the parent (nesting a new level commands/arguments).

For example:

class MyStackedController(CementBaseController):
class Meta:

label = 'my_stacked_controller'
stacked_on = 'base'
stacked_type = 'nested'

Related:

• Issue #234

Discontinued use of Setuptools Namespace Packages

Previous versions of Cement utilitized Setuptools namespace packages in order to allow external libraries (such as
optional framework extensions) to use the cement.ext namespace. Meaning that an extension packaged separately
could use the namespace cement.ext.ext_myextension and be imported from the cement.ext namespace
as if it were shipped with the mainline sources directly. This indirectly caused issues with certain IDE’s due to the fact
that namespace packages do not install a proper __init__.py and are handled differently by Setuptools.

With the move to merging optional extenions into mainline sources, we no longer require the use of Setuptools names-
pace packages. That said, if a developer had created their own extension using the cement.ext namespace, that
extension would no longer work or worse may confusing Python into attempting to load cement.ext from the
extension and not Cement causing even bigger problems.

To resolve this issue, simply change the extension module to anything other than cement.ext, such as myapp.ext.

Related:

3.4. Upgrading 21

https://github.com/datafolklabs/cement/issues/237
https://github.com/datafolklabs/cement/issues/234

Cement Framework, Release 2.10.12

• Issue #202

LoggingLogHandler Changes

The clear_loggers meta option is now a list, rather than a boolean. Therefore, rather than telling Loggin-
gLogHandler to ‘clear all previously defined loggers’, you are telling it to ‘clear only these previously defined loggers’
in the list.

If your application utilizied the LoggingLogHandler.Meta.clear_loggers option, you would simply need
to change it from a boolean to a list of loggers such as ['myapp', 'some_other_logging_namespace'].

Related:

• Issue #163

ConfigParserConfigHandler Changes

The ConfigParserConfigHandler.has_key() function has been removed. To update your application for
these changes, you would look for all code similar to the following:

if myapp.config.has_key('mysection', 'mykey'):
...

And modify it to something similar to:

if 'mykey' in myapp.config.keys('mysection'):
...

Related:

• Issue #173

CementApp Changes

The CementApp.get_last_rendered() function has been deprected. Developers should now use the
CementApp.last_rendered property instead. To update your application for these changes, you would look
for all code similar to:

CementApp.get_last_rendered()

And modify it to something similar to:

CementApp.last_rendered

Related:

• Issue #201 - Add Deprecation Warning for CementApp.get_last_rendered()

CementBaseController Changes

All short-cuts such as log, pargs, etc have been removed from CementBaseController due to the fact that these class
members could clash if the developer added a command/function of the same name. To update your application for
these changes, in any classes that subclass from CementBaseController, you might need to modify references
to self.log, self.pargs, etc to self.app.log, self.app.pargs, etc.

22 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/202
https://github.com/datafolklabs/cement/issues/163
https://github.com/datafolklabs/cement/issues/173
https://github.com/datafolklabs/cement/issues/201

Cement Framework, Release 2.10.12

Additionally, if you wish to re-implement these or other shortcuts, you can do so by overriding _setup() in your
controller code, and add something similar to the following:

def _setup(self, *args, **kw):
res = super(MyClass, self)._setup(*args, **kw)
self.log = self.app.log
self.pargs = self.app.pargs
etc

return res

An additional change to CementBaseController is that the application’s base controller attached to
YourApp.Meta.base_controller now must have a label of base. Previously, the base controller could have
any label however this is now a hard requirement. To update your application for these changes, simply change the
label of your base controller to base.

Finally, the CementBaseController used to have members called hidden, visible, and exposed which
were each a list of controller functions used for handling dispatch of commands, and how they are displayed in
--help. These members no longer exist.

These members were never documented, and is very unlikely that anybody has ever used them directly. Updating your
application for these changes would be outside the scope of this document.

Related:

• Issue #141

• Issue #167

• Issue #179

Backend Changes

Several backend pieces have been moved or renamed. For example cement.core.backend.handlers
is now cement.core.backend.__handlers__, etc. The same goes for cement.core.backend.
SAVED_STDOUT which is now cement.core.backend.__saved_stdout__. These are undocumented, and
used specifically by Cement. It is unlikely that anyone has used these members directly, and updating your application
for these changes is outside the scope of this document. See cement.core.backend to assess what, if any, change
you may need to change in your code to compensate for these changes.

The cement.core.backend.defaults() function has moved to cement.utils.misc.
init_defaults(). It’s usage is exactly the same.

The cement.core.backend.minimal_logger() function has moved to cement.utils.misc.
minimal_logger. It’s usage is also the same.

Related:

• Issue #177

• Issue #178

3.4. Upgrading 23

https://github.com/datafolklabs/cement/issues/141
https://github.com/datafolklabs/cement/issues/167
https://github.com/datafolklabs/cement/issues/179
https://github.com/datafolklabs/cement/issues/177
https://github.com/datafolklabs/cement/issues/178

Cement Framework, Release 2.10.12

3.5 What’s New

3.5.1 New Features in Cement 2.10

Support for Multiple File Plugin Directories

Prior to Cement 2.10, application plugins were only supported as single files such as myplugin.py. Plugins can
now be a single file, or full python modules like myplugin/__init__.py.

An example plugin might look like:

myplugin/
__init__.py
controllers.py
templates/

cmd1.mustache
cmd2.mustache
cmd3.mustache

The only thing required in a plugin is that it supply a load() function either in a myplugin.py or myplugin/
__init__.py. The rest is up to the developer.

See Application Plugins for more information.

Related:

• Issue #350

Cross Platform Filesystem Event Monitoring via Watchdog

Applications can now monitor, and react to, filesystem events with a very easy wrapper around the Watchdog library.
The extension makes it possible to add a list of directories to monitor, and link them with the class to handle any events
while automating the proper setup, and teardown of the backend observer.

The Watchdog Extension will make it possible in future releases to properly handle reloading a running application
any time configuration files are modified (partially implemented by the reload_config extension that has limitations
and does not support reloading the app). Another common use case is the ability to reload a long running process any
time source files are modified which will be useful for development when working on daemon-like apps so that the
developer doesn’t need to stop/start everytime changes are made.

See the Watchdog Extension for more information.

Related:

• Issue #326

• Issue #394

Ability To Pass Meta Defaults From CementApp.Meta Down To Handlers

Cement handlers are often referenced by their label, and not passed as pre-instantiated objects which requires the
framework to instantiate them dynamically with no keyword arguments.

For example:

24 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/350
https://pypi.python.org/pypi/watchdog
https://github.com/datafolklabs/cement/issues/326
https://github.com/datafolklabs/cement/issues/394

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['json']

In the above, Cement will load the json extension, which registers JsonOutputHandler. When it comes time
to recall that handler, it is looked up as output.json where output is the handler type (interface) and json
is the handler label. The class is then instantiated without any arguments or keyword arguments before use. If a
developer needed to override any meta options in JsonOutputHandler.Meta they would previously have had
to sub-class it. Consider the following example, where we sub-class JsonOutputHandler in order to override
JsonOutputHandler.Meta.json_module:

from cement.core.foundation import CementApp
from cement.ext.ext_json import JsonOutputHandler

class MyJsonOutputHandler(JsonOutputHandler):
class Meta:

json_module = 'ujson'

def override_json_output_handler(app):
app.handler.register(MyJsonOutputHandler, force=True)

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['json']
hooks = [

('post_setup', override_json_output_handler)
]

If there were anything else in the JsonOutputHandler that the developer needed to subclass, this would be fine.
However the purpose of the above is soley to override JsonOutputHandler.Meta.json_module, which is
tedious.

As of Cement 2.10, the above can be accomplished more-easily by the following by way of CementApp.Meta.
meta_defaults (similar to how config_defaults are handled:

from cement.core.foundation import CementApp
from cement.utils.misc import init_defaults

META = init_defaults('output.json')
META['output.json']['json_module'] = 'ujson'

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['json']
output_handler = 'json'
meta_defaults = META

When JsonOutputHandler is instantiated, the defaults from META['output.json'] will be passed as
**kwargs (overriding builtin meta options).

Related:

• Issue #395

3.5. What’s New 25

https://github.com/datafolklabs/cement/issues/395

Cement Framework, Release 2.10.12

Additional Extensions

• Jinja2 - Provides template based output handling using the Jinja2 templating language

• Redis - Provides caching support using Redis backend

• Watchdog - Provides cross-platform filesystem event monitoring using the Watchdog library.

• Handlebars - Provides template based output handling using the Handlebars templating language

3.5.2 New Features in Cement 2.8

ArgparseController

Work has finally begun, and is mostly complete on the refactoring of CementBaseController. The new
cement.ext.ext_argparse.ArgparseController introduces the following improvements:

• Cleaner, and more direct use of Argparse

• Does not hijack Argparse usage in any way.

• Provides an accessible sub-parser for every nested controller, allowing the developer direct access to per-
form more advanced actions (argument grouping, mutually exclusive groups, etc).

• Provides the ability to define arguments at both the controller level, as well as the sub-command level (i.e.
myapp controller sub-command {options}).

• Supports argument handling throughout the entire CLI chain (i.e. myapp {options} controller
{options} sub-command {options})

The ArgparseController will become the default in Cement 3, however CementBaseController will
remain the default in Cement 2.x. Developers are encouraged to begin porting to ArgparseController as soon
possible, as CementBaseController will be removed in Cement 3 completely.

Related:

• Issue #205

Extensions

• Argcomplete - Provides the ability to magically perform BASH autocompletion by simply loading the
argcomplete extension. (Requires ArgparseArgumentHandler and ArgparseController to
function).

• Tabulate - Provides tabularized output familiar to users of MySQL, PGSQL, Etc.

• Alarm - Provides quick access to setting an application alarm to easily handling timing out long running opera-
tions.

• Memcached - Now supported on Python 3.

Misc Enhancements

• Cement now supports the ability to reload runtime within the current process via app.reload(). This will
enable future refactoring of the ext_reload_config extension that is intended to handle reloading runtime
after configuration files are modified. This affectively adds SIGHUP support.

26 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/205

Cement Framework, Release 2.10.12

3.5.3 New Features in Cement 2.6

Extensions

• Reload Config - Provides the ability to automatically reload app.config any time configuration files are
modified.

• ColorLog - Provides colorized logging to console (based on standard logging module).

Python With Statement Support

Using the with statement makes setting up, running, and closing Cement apps easier and cleaner. The following is
the recommended way of creating, and running Cement apps:

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
app.run()

Or a more complete example:

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'

with MyApp() as app:
try:

app.run()
except Exception as e:

handle all your exceptions... this is just an example
print('Caught Exception: %s' % e)

When the with statement is initialized, the app object is created, and then right away app.setup() is called
before entering the block. When the with block is exited app.close() is also called. This offers a much cleaner
approach, while still ensuring that the essential pieces are run appropriately. If you require more control over how/when
app.setup() and app.close() are run, you can still do this the old way:

from cement.core.foundation import CementApp

app = CementApp('myapp')
app.setup()
app.run()
app.close()

But doesn’t that just feel clunky?

Related:

• Issue #281

Defining and Registering Hooks and Handlers from CementApp.Meta

Another improvement that lends itself nicely to code-cleanliness is the ability to define and register hooks and handlers
from within CementApp.Meta. An example using application controllers and a simple pre_run hook looks like:

3.5. What’s New 27

https://github.com/datafolklabs/cement/issues/281

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

def my_example_hook(app):
pass

class BaseController(CementBaseController):
class Meta:

label = 'base'

class SecondController(CementBaseController):
class Meta:

label = 'second'

class MyApp(CementApp):
class Meta:

label = 'myapp'

hooks = [
('pre_run', my_example_hook),

]

handlers = [
BaseController,
SecondController,

]

Related:

• Issue #282

3.6 Projects Built on Cement™

The following is an incomplete lists of notable projects that are Built on Cement™:

• Elex (GitHub)

• Amazon Elastic Beanstalk CLI (PYPI)

• Easy Engine (GitHub)

• SentientHome

• Pubkey

• HCE Project

If you are building a project on the Cement Framework and would like to see your company or project
listed here please create an issue and/or pull request on GitHub.

28 Chapter 3. Documentation

https://github.com/datafolklabs/cement/issues/282
http://elex.readthedocs.io/en/stable/
https://github.com/newsdev/elex
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html
https://pypi.python.org/pypi/awsebcli
https://easyengine.io/
https://github.com/EasyEngine/easyengine
https://github.com/fxstein/SentientHome
https://github.com/fxstein/pubkey
http://hce-project.com/
https://github.com/datafolklabs/cement/

Cement Framework, Release 2.10.12

3.7 Frequenty Asked Questions

3.7.1 How do I Manually Print the Help Text for My Application

The common question is how to print the help text that you see when you pass --help to your application, but
manually from within your code. This is a feature of ArgParse and is as simple as calling:

app.args.print_help()

Note that, this obviously will not work if using a different argument handler that implements the IArgument interface
rather than the default ArgparseArgumentHandler.

3.8 API Reference

3.8.1 Cement Core Modules

cement.core.arg

Cement core argument module.

class cement.core.arg.CementArgumentHandler(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

Base class that all Argument Handlers should sub-class from.

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

interface
The interface that this class implements.

alias of IArgument

label = None
The string identifier of the handler implementation.

class cement.core.arg.IArgument
Bases: cement.core.interface.Interface

This class defines the Argument Handler Interface. Classes that implement this handler must provide the meth-
ods and attributes defined below. Implementations do not subclass from interfaces.

Example:

from cement.core import interface, arg

class MyArgumentHandler(arg.CementArgumentHandler):
class Meta:

interface = arg.IArgument
label = 'my_argument_handler'

class IMeta
Interface meta-data options.

label = 'argument'
The string identifier of the interface.

3.7. Frequenty Asked Questions 29

Cement Framework, Release 2.10.12

validator(obj)
Interface validator function.

_setup()
The _setup function is called during application initialization and must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object

Returns None

add_argument(**kw)
Add arguments for parsing. This should be -o/–option or positional. Note that the interface defines the
following parameters so that at the very least, external extensions can guarantee that they can properly add
command line arguments when necessary. The implementation itself should, and will provide and support
many more options than those listed here. That said, the implementation must support the following:

Parameters

• args – List of option arguments. Generally something like [‘-h’, ‘–help’].

• dest – The destination name (var). Default: arg[0]’s string.

• help – The help text for –help output (for that argument).

• action – Must support: [‘store’, ‘store_true’, ‘store_false’, ‘store_const’]

• choices – A list of valid values that can be passed to an option whose action is
store.

• const – The value stored if action == ‘store_const’.

• default – The default value.

Returns None

parse()
Parse the argument list (i.e. sys.argv). Can return any object as long as it’s members contain those of the
added arguments. For example, if adding a ‘-v/–version’ option that stores to the dest of ‘version’, then
the member must be callable as ‘Object().version’.

Parameters arg_list – A list of command line arguments.

Returns Callable object

cement.core.arg.argument_validator(klass, obj)
Validates a handler implementation against the IArgument interface.

cement.core.backend

Cement core backend module.

cement.core.cache

Cement core cache module.

class cement.core.cache.CementCacheHandler(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

Base class that all Cache Handlers should sub-class from.

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

30 Chapter 3. Documentation

Cement Framework, Release 2.10.12

interface
The interface that this handler class implements.

alias of ICache

label = None
String identifier of this handler implementation.

class cement.core.cache.ICache
Bases: cement.core.interface.Interface

This class defines the Cache Handler Interface. Classes that implement this handler must provide the methods
and attributes defined below.

Implementations do not subclass from interfaces.

Usage:

from cement.core import cache

class MyCacheHandler(object):
class Meta:

interface = cache.ICache
label = 'my_cache_handler'

...

class IMeta
Interface meta-data.

label = 'cache'
The label (or type identifier) of the interface.

validator(obj)
Interface validator function.

_setup()
The _setup function is called during application initialization and must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

delete()
Deletes a key/value from the cache.

Parameters key – The key in the cache to delete.

Returns True if the key is successfully deleted, False otherwise.

Return type boolean

get(fallback=None)
Get the value for a key in the cache. If the key does not exist or the key/value in cache is expired, this
functions must return ‘fallback’ (which in turn must default to None).

Parameters

• key – The key of the value stored in cache

• fallback – Optional value that is returned if the cache is expired or the key does
not exist. Default: None

Returns Unknown (whatever the value is in cache, or the fallback)

3.8. API Reference 31

Cement Framework, Release 2.10.12

purge()
Clears all data from the cache.

set(value, time=None)
Set the key/value in the cache for a set amount of time.

Parameters

• key – The key of the value to store in cache.

• value – The value of that key to store in cache.

• time (int (seconds) or None) – A one-off expire time. If no time is given, then a
default value is used (determined by the implementation).

Returns None

cement.core.cache.cache_validator(klass, obj)
Validates a handler implementation against the ICache interface.

cement.core.config

Cement core config module.

class cement.core.config.CementConfigHandler(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

Base class that all Config Handlers should sub-class from.

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

interface
The interface that this handler implements.

alias of IConfig

label = None
The string identifier of the implementation.

_parse_file(file_path)
Parse a configuration file at file_path and store it. This function must be provided by the handler imple-
mentation (that is sub-classing this).

Parameters file_path – The file system path to the configuration file.

Returns True if file was read properly, False otherwise

Return type boolean

parse_file(file_path)
Ensure we are using the absolute/expanded path to file_path, and then call _parse_file to parse config file
settings from it, overwriting existing config settings. If the file does not exist, returns False.

Developers sub-classing from here should generally override _parse_file which handles just the parsing
of the file and leaving this function to wrap any checks/logging/etc.

Parameters file_path – The file system path to the configuration file.

Returns boolean

class cement.core.config.IConfig
Bases: cement.core.interface.Interface

32 Chapter 3. Documentation

Cement Framework, Release 2.10.12

This class defines the Config Handler Interface. Classes that implement this handler must provide the methods
and attributes defined below.

All implementations must provide sane ‘default’ functionality when instantiated with no arguments. Meaning, it
can and should accept optional parameters that alter how it functions, but can not require any parameters. When
the framework first initializes handlers it does not pass anything too them, though a handler can be instantiated
first (with or without parameters) and then passed to ‘CementApp()’ already instantiated.

Implementations do not subclass from interfaces.

Usage:

from cement.core import config

class MyConfigHandler(config.CementConfigHandler):
class Meta:

interface = config.IConfig
label = 'my_config_handler'

...

class IMeta
Interface meta-data.

label = 'config'
The string identifier of the interface.

validator(obj)
The validator function.

_setup()
The _setup function is called during application initialization and must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

add_section()
Add a new section if it doesn’t exist.

Parameters section – The [section] label to create.

Returns None

get(key)
Return a configuration value based on [section][key]. The return value type is unknown.

Parameters

• section – The [section] of the configuration to pull key value from.

• key – The configuration key to get the value from.

Returns The value of the key in section.

Return type Unknown

get_section_dict()
Return a dict of configuration parameters for [section].

Parameters section – The config [section] to generate a dict from (using that section keys).

Returns A dictionary of the config section.

Return type dict

3.8. API Reference 33

Cement Framework, Release 2.10.12

get_sections()
Return a list of configuration sections. These are designated by a [block] label in a config file.

Returns A list of config sections.

Return type list

has_section()
Returns whether or not the section exists.

Parameters section – The section to test for.

Returns boolean

keys()
Return a list of configuration keys from section.

Parameters section – The config [section] to pull keys from.

Returns A list of keys in section.

Return type list

merge(override=True)
Merges a dict object into the configuration.

Parameters

• dict_obj – The dictionary to merge into the config

• override – Boolean. Whether to override existing values. Default: True

Returns None

parse_file()
Parse config file settings from file_path. Returns True if the file existed, and was parsed successfully.
Returns False otherwise.

Parameters file_path – The path to the config file to parse.

Returns True if the file was parsed, False otherwise.

Return type boolean

set(key, value)
Set a configuration value based at [section][key].

Parameters

• section – The [section] of the configuration to pull key value from.

• key – The configuration key to set the value at.

• value – The value to set.

Returns None

cement.core.config.config_validator(klass, obj)
Validates a handler implementation against the IConfig interface.

cement.core.controller

Cement core controller module.

34 Chapter 3. Documentation

Cement Framework, Release 2.10.12

class cement.core.controller.CementBaseController(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

This is an implementation of the IControllerHandler interface, but as a base class that application controllers
should subclass from. Registering it directly as a handler is useless.

NOTE: This handler requires that the applications ‘arg_handler’ be argparse. If using an alternative argument
handler you will need to write your own controller base class.

NOTE: This the initial default implementation of CementBaseController. In the future it will be replaced by
CementBaseController2, therefore using CementBaseController2 is recommended for new development.

Usage:

from cement.core.controller import CementBaseController

class MyAppBaseController(CementBaseController):
class Meta:

label = 'base'
description = 'MyApp is awesome'
config_defaults = dict()
arguments = []
epilog = "This is the text at the bottom of --help."
...

class MyStackedController(CementBaseController):
class Meta:

label = 'second_controller'
aliases = ['sec', 'secondary']
stacked_on = 'base'
stacked_type = 'embedded'
...

class Meta
Controller meta-data (can be passed as keyword arguments to the parent class).

aliases = []
A list of aliases for the controller. Will be treated like command/function aliases for non-stacked
controllers. For example: myapp <controller_label> --help is the same as myapp
<controller_alias> --help.

aliases_only = False
When set to True, the controller label will not be displayed at command line, only the aliases will.
Effectively, aliases[0] will appear as the label. This feature is useful for the situation Where you
might want two controllers to have the same label when stacked on top of separate controllers.
For example, ‘myapp users list’ and ‘myapp servers list’ where ‘list’ is a stacked controller, not a
function.

argument_formatter
alias of argparse.RawDescriptionHelpFormatter

arguments = []
Arguments to pass to the argument_handler. The format is a list of tuples whos items are a (list, dict
). Meaning:

[(['-f', '--foo'], dict(dest='foo', help='foo option')),]

This is equivelant to manually adding each argument to the argument parser as in the following
example:

3.8. API Reference 35

https://docs.python.org/3.4/library/argparse.html#argparse.RawDescriptionHelpFormatter

Cement Framework, Release 2.10.12

parser.add_argument(['-f', '--foo'], help='foo option',
dest='foo')

config_defaults = {}
Configuration defaults (type: dict) that are merged into the applications config object for the con-
fig_section mentioned above.

config_section = None
A config [section] to merge config_defaults into. Cement will default to controller.<label> if None
is set.

default_func = 'default'
Function to call if no sub-command is passed. Note that this can not start with an _ due to backward
compatibility restraints in how Cement discovers and maps commands.

description = None
The description shown at the top of ‘–help’. Default: None

epilog = None
The text that is displayed at the bottom when ‘–help’ is passed.

hide = False
Whether or not to hide the controller entirely.

interface
The interface this class implements.

alias of IController

label = None
The string identifier for the controller.

stacked_on = 'base'
A label of another controller to ‘stack’ commands/arguments on top of.

stacked_type = 'embedded'
Whether to embed commands and arguments within the parent controller or to simply nest the con-
troller under the parent controller (making it a sub-sub-command). Must be one of [‘embedded’,
‘nested’] only if stacked_on is not None.

usage = None
The text that is displayed at the top when ‘–help’ is passed. Although the default is None, Cement
will set this to a generic usage based on the prog, controller name, etc if nothing else is passed.

_dispatch()
Takes the remaining arguments from self.app.argv and parses for a command to dispatch, and if so. . .
dispatches it.

_help_text
Returns the help text displayed when ‘–help’ is passed.

_setup(app_obj)
See IController._setup().

_usage_text
Returns the usage text displayed when --help is passed.

class cement.core.controller.IController
Bases: cement.core.interface.Interface

This class defines the Controller Handler Interface. Classes that implement this handler must provide the meth-
ods and attributes defined below.

36 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Implementations do not subclass from interfaces.

Usage:

from cement.core import controller

class MyBaseController(controller.CementBaseController):
class Meta:

interface = controller.IController
...

class IMeta
Interface meta-data.

label = 'controller'
The string identifier of the interface.

validator(obj)
The interface validator function.

_dispatch()
Reads the application object’s data to dispatch a command from this controller. For example, reading
self.app.pargs to determine what command was passed, and then executing that command function.

Note that Cement does not parse arguments when calling _dispatch() on a controller, as it expects the
controller to handle parsing arguments (I.e. self.app.args.parse()).

Returns Returns the result of the executed controller function, or None if no controller func-
tion is called.

_setup()
The _setup function is after application initialization and after it is determined that this controller was
requested via command line arguments. Meaning, a controllers _setup() function is only called right
before it’s _dispatch() function is called to execute a command. Must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

cement.core.controller.controller_validator(klass, obj)
Validates a handler implementation against the IController interface.

class cement.core.controller.expose(help=”, hide=False, aliases=[], aliases_only=False)
Bases: object

Used to expose controller functions to be listed as commands, and to decorate the function with Meta data for
the argument parser.

Parameters

• help (str) – Help text to display for that command.

• hide (boolean) – Whether the command should be visible.

• aliases (list) – Aliases to this command.

• aliases_only – Whether to only display the aliases (not the label). This is useful
for situations where you have obscure function names which you do not want displayed.
Effecively, if there are aliases and aliases_only is True, then aliases[0] will appear as the
actual command/function label.

Usage:

3.8. API Reference 37

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str

Cement Framework, Release 2.10.12

from cement.core.controller import CementBaseController, expose

class MyAppBaseController(CementBaseController):
class Meta:

label = 'base'

@expose(hide=True, aliases=['run'])
def default(self):

print("In MyAppBaseController.default()")

@expose()
def my_command(self):

print("In MyAppBaseController.my_command()")

cement.core.exc

Cement core exceptions module.

exception cement.core.exc.CaughtSignal(signum, frame)
Bases: cement.core.exc.FrameworkError

Raised when a defined signal is caught. For more information regarding signals, reference the signal library.

Parameters

• signum – The signal number.

• frame – The signal frame.

exception cement.core.exc.FrameworkError(msg)
Bases: exceptions.Exception

General framework (non-application) related errors.

Parameters msg – The error message.

exception cement.core.exc.InterfaceError(msg)
Bases: cement.core.exc.FrameworkError

Interface related errors.

cement.core.extension

Cement core extensions module.

class cement.core.extension.CementExtensionHandler(**kw)
Bases: cement.core.handler.CementBaseHandler

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

interface
The interface that this class implements.

alias of IExtension

label = 'cement'
The string identifier of the handler.

get_loaded_extensions()
Returns list of loaded extensions.

38 Chapter 3. Documentation

http://docs.python.org/library/signal.html

Cement Framework, Release 2.10.12

load_extension(ext_module)
Given an extension module name, load or in other-words ‘import’ the extension.

Parameters ext_module (str) – The extension module name. For example: ‘ce-
ment.ext.ext_logging’.

Raises cement.core.exc.FrameworkError

load_extensions(ext_list)
Given a list of extension modules, iterate over the list and pass individually to self.load_extension().

Parameters ext_list (list) – A list of extension modules.

class cement.core.extension.IExtension
Bases: cement.core.interface.Interface

This class defines the Extension Handler Interface. Classes that implement this handler must provide the meth-
ods and attributes defined below.

Implementations do not subclass from interfaces.

Usage:

from cement.core import extension

class MyExtensionHandler(object):
class Meta:

interface = extension.IExtension
label = 'my_extension_handler'

...

class IMeta
Interface meta-data.

label = 'extension'
The string identifier of the interface.

validator(obj)
The interface validator function.

_setup()
The _setup function is called during application initialization and must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

load_extension(ext_module)
Load an extension whose module is ‘ext_module’. For example, ‘cement.ext.ext_configobj’.

Parameters ext_module (str) – The name of the extension to load.

load_extensions(ext_list)
Load all extensions from ext_list.

Parameters ext_list (list) – A list of extension modules to load. For example:
['cement.ext.ext_configobj', 'cement.ext.ext_logging']

cement.core.extension.extension_validator(klass, obj)
Validates an handler implementation against the IExtension interface.

3.8. API Reference 39

Cement Framework, Release 2.10.12

cement.core.foundation

Cement core foundation module.

class cement.core.foundation.CementApp(label=None, **kw)
Bases: cement.core.meta.MetaMixin

The primary class to build applications from.

Usage:

The following is the simplest CementApp:

from cement.core.foundation import CementApp

with CementApp('helloworld') as app:
app.run()

Alternatively, the above could be written as:

from cement.core.foundation import CementApp

app = foundation.CementApp('helloworld')
app.setup()
app.run()
app.close()

A more advanced example looks like:

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class MyController(CementBaseController):
class Meta:

label = 'base'
arguments = [

(['-f', '--foo'], dict(help='Notorious foo option')),
]

config_defaults = dict(
debug=False,
some_config_param='some_value',
)

@expose(help='This is the default command', hide=True)
def default(self):

print('Hello World')

class MyApp(CementApp):
class Meta:

label = 'helloworld'
extensions = ['daemon','json',]
base_controller = MyController

with MyApp() as app:
app.run()

class Meta
Application meta-data (can also be passed as keyword arguments to the parent class).

40 Chapter 3. Documentation

Cement Framework, Release 2.10.12

alternative_module_mapping = {}
EXPERIMENTAL FEATURE: This is an experimental feature added in Cement 2.9.x and may or
may not be removed in future versions of Cement.

Dictionary of alternative, drop-in replacement modules to use selectively throughout the applica-
tion, framework, or extensions. Developers can optionally use the CementApp.__import__()
method to import simple modules, and if that module exists in this mapping it will import the alter-
native library in it’s place.

This is a low-level feature, and may not produce the results you are expecting. It’s purpose is to allow
the developer to replace specific modules at a high level. Example: For an application wanting to
use ujson in place of json, the developer could set the following:

alternative_module_mapping = {
'json' : 'ujson',

}

In the app, you would then load json as:

_json = app.__import__('json')
_json.dumps(data)

Obviously, the replacement module must be a drop-in replace and function the same.

argument_handler = 'argparse'
A handler class that implements the IArgument interface.

arguments_override_config = False
A boolean to toggle whether command line arguments should override configuration values if the
argument name matches the config key. I.e. –foo=bar would override config[‘myapp’][‘foo’].

This is different from override_arguments in that if arguments_override_config is
True, then all arguments will override (you don’t have to list them all).

argv = None
A list of arguments to use for parsing command line arguments and options.

Note: Though Meta.argv defaults to None, Cement will set this to list(sys.argv[1:]) if no
argv is set in Meta during setup().

base_controller = None
This is the base application controller. If a controller is set, runtime operations are passed to the
controller for command dispatch and argument parsing when CementApp.run() is called.

Note that cement will automatically set the base_controller to a registered controller whose label is
‘base’ (only if base_controller is not currently set).

bootstrap = None
A bootstrapping module to load after app creation, and before app.setup() is called. This is
useful for larger applications that need to offload their bootstrapping code such as registering
hooks/handlers/etc to another file.

This must be a dotted python module path. I.e. ‘myapp.bootstrap’ (myapp/bootstrap.py). Cement
will then import the module, and if the module has a ‘load()’ function, that will also be called.
Essentially, this is the same as an extension or plugin, but as a facility for the application itself to
bootstrap ‘hardcoded’ application code. It is also called before plugins are loaded.

cache_handler = None
A handler class that implements the ICache interface.

3.8. API Reference 41

Cement Framework, Release 2.10.12

catch_signals = [15, 2, 1]
List of signals to catch, and raise exc.CaughtSignal for. Can be set to None to disable signal handling.

config_defaults = None
Default configuration dictionary. Must be of type ‘dict’.

config_extension = '.conf'
Extension used to identify application and plugin configuration files.

config_files = None
List of config files to parse.

Note: Though Meta.config_section defaults to None, Cement will set this to a default list based on
Meta.label (or in other words, the name of the application). This will equate to:

['/etc/<app_label>/<app_label>.conf',
'~/.<app_label>.conf',
'~/.<app_label>/config']

Files are loaded in order, and have precedence in order. Therefore, the last configuration loaded has
precedence (and overwrites settings loaded from previous configuration files).

Note that .conf is the default config file extension, defined by CementApp.Meta.
config_extension.

config_handler = 'configparser'
A handler class that implements the IConfig interface.

config_section = None
The base configuration section for the application.

Note: Though Meta.config_section defaults to None, Cement will set this to the value of Meta.label
(or in other words, the name of the application).

core_extensions = ['cement.ext.ext_dummy', 'cement.ext.ext_smtp', 'cement.ext.ext_plugin', 'cement.ext.ext_configparser', 'cement.ext.ext_logging', 'cement.ext.ext_argparse']
List of Cement core extensions. These are generally required by Cement and should only be modi-
fied if you know what you’re doing. Use ‘extensions’ to add to this list, rather than overriding core
extensions. That said if you want to prune down your application, you can remove core extensions
if they are not necessary (for example if using your own log handler extension you likely don’t
want/need LoggingLogHandler to be registered).

core_handler_override_options = {'output': (['-o'], {'help': 'output handler'})}
Similar to CementApp.Meta.handler_override_options but these are the core de-
faults required by Cement. This dictionary can be overridden by CementApp.Meta.
handler_override_options (when they are merged together).

core_meta_override = ['debug', 'plugin_config_dir', 'plugin_dir', 'ignore_deprecation_warnings', 'template_dir', 'mail_handler', 'cache_handler', 'log_handler', 'output_handler']
List of meta options that can/will be overridden by config options of the ‘[base]’ config sec-
tion (where [base] is the base configuration section of the application which is determined by
Meta.config_section but defaults to Meta.label). These overrides are required by the framework
to function properly and should not be used by end user (developers) unless you really know what
you’re doing. To add your own extended meta overrides please use ‘meta_override’.

debug = False
Used internally, and should not be used by developers. This is set to True if –debug is passed at
command line.

define_handlers = []
List of interfaces classes to define handlers. Must be a list of uninstantiated interface classes.

I.e. ['MyCustomInterface', 'SomeOtherInterface']

42 Chapter 3. Documentation

Cement Framework, Release 2.10.12

define_hooks = []
List of hook definitions (label). Will be passed to self.hook.define(<hook_label>).
Must be a list of strings.

I.e. ['my_custom_hook', 'some_other_hook']

exit_on_close = False
Whether or not to call sys.exit() when close() is called. The default is False, however if
True then the app will call sys.exit(X) where X is self.exit_code.

extension_handler = 'cement'
A handler class that implements the IExtension interface.

extensions = []
List of additional framework extensions to load.

framework_logging = True
Whether or not to enable Cement framework logging. This is separate from the application log, and
is generally used for debugging issues with the framework and/or extensions primarily in develop-
ment.

This option is overridden by the environment variable CEMENT_FRAMEWORK_LOGGING.
Therefore, if in production you do not want the Cement framework log enabled, you can set
this option to False but override it in your environment by doing something like export
CEMENT_FRAMEWORK_LOGGING=1 in your shell whenever you need it enabled.

handler_override_options = {}
Dictionary of handler override options that will be added to the argument parser, and allow the end-
user to override handlers. Useful for interfaces that have multiple uses within the same application
(for example: Output Handler (json, yaml, etc) or maybe a Cloud Provider Handler (rackspace,
digitalocean, amazon, etc).

This dictionary will merge with CementApp.Meta.core_handler_override_options
but this one has precedence.

Dictionary Format:

<interface_name> = (option_arguments, help_text)

See CementApp.Meta.core_handler_override_options for an example of what this
should look like.

Note, if set to None then no options will be defined, and the CementApp.Meta.
core_meta_override_options will be ignore (not recommended as some extensions rely
on this feature).

handlers = []
List of handler classes to register. Will be passed to handler.
register(<handler_class>). Must be a list of uninstantiated handler classes.

I.e. [MyCustomHandler, SomeOtherHandler]

hooks = []
List of hooks to register when the app is created. Will be passed to self.hook.
register(<hook_label>, <hook_func>). Must be a list of tuples in the form of
(<hook_label>, <hook_func>).

I.e. [('post_argument_parsing', my_hook_func)].

ignore_deprecation_warnings = False
Disable deprecation warnings from being logged by Cement.

3.8. API Reference 43

Cement Framework, Release 2.10.12

label = None
The name of the application. This should be the common name as you would see and use at the
command line. For example ‘helloworld’, or ‘my-awesome-app’.

log_handler = 'logging'
A handler class that implements the ILog interface.

mail_handler = 'dummy'
A handler class that implements the IMail interface.

meta_defaults = {}
Default metadata dictionary used to pass high level options from the application down to handlers at
the point they are registered by the framework if the handler has not already been instantiated.

For example, if requiring the json extension, you might want to override
JsonOutputHandler.Meta.json_module with ujson by doing the following

from cement.core.foundation import CementApp
from cement.utils.misc import init_defaults

META = init_defaults('output.json')
META['output.json']['json_module'] = 'ujson'

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['json']
meta_defaults = META

meta_override = []
List of meta options that can/will be overridden by config options of the ‘[base]’ config sec-
tion (where [base] is the base configuration section of the application which is determined by
Meta.config_section but defaults to Meta.label).

output_handler = 'dummy'
A handler class that implements the IOutput interface.

override_arguments = ['debug']
List of arguments that override their configuration counter-part. For example, if --debug is passed
(and it’s config value is debug) then the debug key of all configuration sections will be overridden
by the value of the command line option (True in this example).

This is different from arguments_override_config in that this is a selective list of specific
arguments to override the config with (and not all arguments that match the config). This list will
take affect whether arguments_override_config is True or False.

plugin_bootstrap = None
A python package (dotted import path) where plugin code can be loaded from. This is gen-
erally something like myapp.plugins where a plugin file would live at myapp/plugins/
myplugin.py. This provides a facility for applications that have builtin plugins that ship with the
applications source code and live in the same Python module.

Note: Though the meta default is None, Cement will set this to <app_label>.plugins if not
set.

plugin_config_dir = None
A directory path where plugin config files can be found. Files must end in .conf (or the extension
defined by CementApp.Meta.config_extension) or they will be ignored. By default, this
setting is also overridden by the [<app_label>] -> plugin_config_dir config setting
parsed in any of the application configuration files.

44 Chapter 3. Documentation

Cement Framework, Release 2.10.12

If set, this item will be appended to CementApp.Meta.plugin_config_dirs so that it’s
settings will have presedence over other configuration files.

In general, this setting should not be defined by the developer, as it is primarily used to allow the
end-user to define a plugin_config_dir without completely trumping the hard-coded list of
default plugin_config_dirs defined by the app/developer.

plugin_config_dirs = None
A list of directory paths where plugin config files can be found. Files must end in .conf (or the
extension defined by CementApp.Meta.config_extension) or they will be ignored.

Note: Though CementApp.Meta.plugin_config_dirs is None, Cement will set this to a
default list based on CementApp.Meta.label. This will equate to:

['/etc/<app_label>/plugins.d', '~/.<app_label>/plugin.d']

Files are loaded in order, and have precedence in that order. Therefore, the last configuration loaded
has precedence (and overwrites settings loaded from previous configuration files).

plugin_dir = None
A directory path where plugin code (modules) can be loaded from. By default, this setting is also
overridden by the [<app_label>] -> plugin_dir config setting parsed in any of the appli-
cation configuration files.

If set, this item will be prepended to Meta.plugin_dirs so that a users defined plugin_dir
has precedence over others.

In general, this setting should not be defined by the developer, as it is primarily used to allow
the end-user to define a plugin_dir without completely trumping the hard-coded list of default
plugin_dirs defined by the app/developer.

plugin_dirs = None
A list of directory paths where plugin code (modules) can be loaded from.

Note: Though CementApp.Meta.plugin_dirs is None, Cement will set this to a default list
based on CementApp.Meta.label if not set. This will equate to:

['~/.<app_label>/plugins', '/usr/lib/<app_label>/plugins']

Modules are attempted to be loaded in order, and will stop loading once a plugin is successfully
loaded from a directory. Therefore this is the oposite of configuration file loading, in that here the
first has precedence.

plugin_handler = 'cement'
A handler class that implements the IPlugin interface.

plugins = []
A list of plugins to load. This is generally considered bad practice since plugins should be dynami-
cally enabled/disabled via a plugin config file.

signal_handler(frame)
A function that is called to handle any caught signals.

template_dir = None
A directory path where template files can be loaded from. By default, this setting is also overridden
by the [<app_label>] -> template_dir config setting parsed in any of the application
configuration files .

If set, this item will be prepended to CementApp.Meta.template_dirs (giving it prece-
dence over other template_dirs.

3.8. API Reference 45

Cement Framework, Release 2.10.12

template_dirs = None
A list of directory paths where template files can be loaded from.

Note: Though CementApp.Meta.template_dirs defaults to None, Cement will set this to a
default list based on CementApp.Meta.label. This will equate to:

['~/.<app_label>/templates', '/usr/lib/<app_label>/templates']

Templates are attempted to be loaded in order, and will stop loading once a template is successfully
loaded from a directory.

template_module = None
A python package (dotted import path) where template files can be loaded from. This is gener-
ally something like myapp.templates where a plugin file would live at myapp/templates/
mytemplate.txt. Templates are first loaded from CementApp.Meta.template_dirs,
and and secondly from CementApp.Meta.template_module. The template_dirs set-
ting has presedence.

use_backend_globals = True
This is a backward compatibility feature. Cement 2.x.x relies on several global variables hidden
in cement.core.backend used for things like storing hooks and handlers. Future versions of
Cement will no longer use this mechanism, however in order to maintain backward compatibility
this is still the default. By disabling this feature allows multiple instances of CementApp to be
created from within the same runtime space without clobbering eachothers hooks/handers/etc.

Be warned that use of third-party extensions might break as they were built using backend globals,
and probably have no idea this feature has changed or exists.

_lay_cement()
Initialize the framework.

add_arg(*args, **kw)
A shortcut for self.args.add_argument.

add_template_dir(path)
Append a directory path to the list of template directories to parse for templates.

Parameters path – Directory path that contains template files.

Usage:

app.add_template_dir('/path/to/my/templates')

argv
The arguments list that will be used when self.run() is called.

catch_signal(signum)
Add signum to the list of signals to catch and handle by Cement.

Parameters signum – The signal number to catch. See Python signal library.

close(code=None)
Close the application. This runs the pre_close and post_close hooks allowing plug-
ins/extensions/etc to cleanup at the end of program execution.

Parameters code – An exit code to exit with (int), if None is passed then exit with what-
ever self.exit_code is currently set to. Note: sys.exit() will only be called if
CementApp.Meta.exit_on_close==True.

debug
Returns boolean based on whether --debug was passed at command line or set via the application’s
configuration file.

46 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Returns boolean

extend(member_name, member_object)
Extend the CementApp() object with additional functions/classes such as ‘app.my_custom_function()’,
etc. It provides an interface for extensions to provide functionality that travel along with the application
object.

Parameters

• member_name (str) – The name to attach the object to.

• member_object – The function or class object to attach to CementApp().

Raises cement.core.exc.FrameworkError

get_last_rendered()
DEPRECATION WARNING: This function is deprecated as of Cement 2.1.3 in favor of the
self.last_rendered property, and will be removed in future versions of Cement.

Return the (data, output_text) tuple of the last time self.render() was called.

Returns tuple (data, output_text)

last_rendered
Return the (data, output_text) tuple of the last time self.render() was called.

Returns tuple (data, output_text)

pargs
Returns the parsed_args object as returned by self.args.parse().

reload()
This function is useful for reloading a running applications, for example to reload configuration settings,
etc.

Returns None

remove_template_dir(path)
Remove a directory path from the list of template directories to parse for templates.

Parameters path – Directory path that contains template files.

Usage:

app.remove_template_dir('/path/to/my/templates')

render(data, template=None, out=<open file ’<stdout>’, mode ’w’>, **kw)
This is a simple wrapper around self.output.render() which simply returns an empty string if no self.output
handler is defined.

Parameters

• data – The data dictionary to render.

• template – The template to render to. Default: None (some output handlers do not
use templates).

• out – A file like object (sys.stdout, or actual file). Set to None is no output is desired
(just render and return). Default: sys.stdout

run()
This function wraps everything together (after self._setup() is called) to run the application.

3.8. API Reference 47

Cement Framework, Release 2.10.12

Returns Returns the result of the executed controller function if a base controller is set and a
controller function is called, otherwise None if no controller dispatched or no controller
function was called.

run_forever(interval=1, tb=True)
This function wraps run() with an endless while loop. If any exception is encountered it will be logged
and then the application will be reloaded.

Parameters

• interval – The number of seconds to sleep before reloading the the appliction.

• tb – Whether or not to print traceback if exception occurs.

Returns It should never return.

setup()
This function wraps all ‘_setup’ actons in one call. It is called before self.run(), allowing the application
to be _setup but not executed (possibly letting the developer perform other actions before full execution.).

All handlers should be instantiated and callable after setup is complete.

validate_config()
Validate application config settings.

Usage:

import os
from cement.core import foundation

class MyApp(foundation.CementApp):
class Meta:

label = 'myapp'

def validate_config(self):
super(MyApp, self).validate_config()

test that the log file directory exist, if not create it
logdir = os.path.dirname(self.config.get('log', 'file'))

if not os.path.exists(logdir):
os.makedirs(logdir)

cement.core.foundation.add_handler_override_options(app)
This is a post_setup hook that adds the handler override options to the argument parser

Parameters app – The application object.

cement.core.foundation.cement_signal_handler(signum, frame)
Catch a signal, run the ‘signal’ hook, and then raise an exception allowing the app to handle logic elsewhere.

Parameters

• signum – The signal number

• frame – The signal frame.

Raises cement.core.exc.CaughtSignal

cement.core.foundation.handler_override(app)
This is a post_argument_parsing hook that overrides a configured handler if defined in CementApp.
Meta.handler_override_options and the option is passed at command line with a valid handler label.

Parameters app – The application object.

48 Chapter 3. Documentation

Cement Framework, Release 2.10.12

cement.core.handler

Cement core handler module.

class cement.core.handler.CementBaseHandler(**kw)
Bases: cement.core.meta.MetaMixin

Base handler class that all Cement Handlers should subclass from.

class Meta
Handler meta-data (can also be passed as keyword arguments to the parent class).

config_defaults = None
A config dictionary that is merged into the applications config in the [<config_section>]
block. These are defaults and do not override any existing defaults under that section.

config_section = None
A config [section] to merge config_defaults with.

Note: Though Meta.config_section defaults to None, Cement will set this to the value of
<interface_label>.<handler_label> if no section is set by the user/developer.

interface = None
The interface that this class implements.

label = None
The string identifier of this handler.

overridable = False
Whether or not handler can be overridden by CementApp.Meta.
handler_override_options. Will be listed as an available choice to override the
specific handler (i.e. CementApp.Meta.output_handler, etc).

_setup(app_obj)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

class cement.core.handler.HandlerManager(use_backend_globals=False)
Bases: object

Manages the handler system to define, get, resolve, etc handlers with the Cement Framework.

Parameters use_backend_globals – Whether to use backend globals (backward compati-
bility and deprecated).

define(interface)
Define a handler based on the provided interface. Defines a handler type based on <interface>.
IMeta.label.

Parameters interface – The interface class that defines the interface to be implemented
by handlers.

Raises cement.core.exc.InterfaceError

Raises cement.core.exc.FrameworkError

Usage:

app.handler.define(IDatabaseHandler)

3.8. API Reference 49

https://docs.python.org/3.4/library/functions.html#object

Cement Framework, Release 2.10.12

defined(handler_type)
Test whether handler_type is defined.

Parameters handler_type – The name or handler_type of the handler (I.e. log,
config, output, etc).

Returns True if the handler type is defined, False otherwise.

Return type boolean

Usage:

app.handler.defined('log')

get(handler_type, handler_label, *args)
Get a handler object.

Parameters

• handler_type (str) – The type of handler (i.e. output)

• handler_label (str) – The label of the handler (i.e. json)

• fallback – A fallback value to return if handler_label doesn’t exist.

Returns An uninstantiated handler object

Raises cement.core.exc.FrameworkError

Usage:

output = app.handler.get('output', 'json')
output.render(dict(foo='bar'))

list(handler_type)
Return a list of handlers for a given handler_type.

Parameters handler_type – The type of handler (i.e. output)

Returns List of handlers that match hander_type.

Return type list

Raises cement.core.exc.FrameworkError

Usage:

app.handler.list('log')

list_types()
Return a list of handler types (interface labels).

Returns List of handlers types (interface labels).

Return type list

Raises cement.core.exc.FrameworkError

Usage:

app.handler.list_types()

register(handler_obj, force=False)
Register a handler object to a handler. If the same object is already registered then no exception is raised,
however if a different object attempts to be registered to the same name a FrameworkError is raised.

50 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Parameters

• handler_obj – The uninstantiated handler object to register.

• force – Whether to allow replacement if an existing handler of the same label is
already registered.

Raises cement.core.exc.InterfaceError

Raises cement.core.exc.FrameworkError

Usage:

class MyDatabaseHandler(object):
class Meta:

interface = IDatabase
label = 'mysql'

def connect(self):
...

app.handler.register(MyDatabaseHandler)

registered(handler_type, handler_label)
Check if a handler is registered.

Parameters

• handler_type – The type of handler (interface label)

• handler_label – The label of the handler

Returns True if the handler is registered, False otherwise

Return type boolean

Usage:

app.handler.registered('log', 'colorlog')

resolve(handler_type, handler_def, **kwargs)
Resolves the actual handler, as it can be either a string identifying the handler to load from
self.__handlers__, or it can be an instantiated or non-instantiated handler class.

Parameters

• handler_type – The type of handler (aka the interface label)

• handler_def (str, uninstantiated object, or instantiated
object) – The handler as defined in CementApp.Meta.

• raise_error (boolean) – Whether or not to raise an exception if unable to re-
solve the handler.

Keywork meta_defaults Optional meta-data dictionary used as defaults to pass when instan-
tiating uninstantiated handlers. See CementApp.Meta.meta_defaults.

Returns The instantiated handler object.

Usage:

via label (str)
log = app.handler.resolve('log', 'colorlog')

(continues on next page)

3.8. API Reference 51

https://docs.python.org/3.4/library/stdtypes.html#str

Cement Framework, Release 2.10.12

(continued from previous page)

via uninstantiated handler class
log = app.handler.resolve('log', ColorLogHanddler)

via instantiated handler instance
log = app.handler.resolve('log', ColorLogHandler())

cement.core.handler.define(interface)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.handler.define() instead.

—

Define a handler based on the provided interface. Defines a handler type based on <interface>.IMeta.label.

Parameters interface – The interface class that defines the interface to be implemented by
handlers.

Raises cement.core.exc.InterfaceError

Raises cement.core.exc.FrameworkError

Usage:

from cement.core import handler

handler.define(IDatabaseHandler)

cement.core.handler.defined(handler_type)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.handler.defined() instead.

—

Test whether a handler type is defined.

Parameters handler_type – The name or ‘type’ of the handler (I.e. ‘logging’).

Returns True if the handler type is defined, False otherwise.

Return type boolean

cement.core.handler.get(handler_type, handler_label, *args)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.handler.get() instead.

—

Get a handler object.

Required Arguments:

Parameters

• handler_type (str) – The type of handler (i.e. ‘output’)

• handler_label (str) – The label of the handler (i.e. ‘json’)

• fallback – A fallback value to return if handler_label doesn’t exist.

Returns An uninstantiated handler object

Raises cement.core.exc.FrameworkError

Usage:

52 Chapter 3. Documentation

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Cement Framework, Release 2.10.12

from cement.core import handler output = handler.get(‘output’, ‘json’) out-
put.render(dict(foo=’bar’))

cement.core.handler.list(handler_type)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.handler.list() instead.

—

Return a list of handlers for a given type.

Parameters handler_type – The type of handler (i.e. ‘output’)

Returns List of handlers that match type.

Return type list

Raises cement.core.exc.FrameworkError

cement.core.handler.register(handler_obj, force=False)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.handler.register() instead.

—

Register a handler object to a handler. If the same object is already registered then no exception is raised,
however if a different object attempts to be registered to the same name a FrameworkError is raised.

Parameters

• handler_obj – The uninstantiated handler object to register.

• force – Whether to allow replacement if an existing handler of the same label is
already registered.

Raises cement.core.exc.InterfaceError

Raises cement.core.exc.FrameworkError

Usage:

from cement.core import handler

class MyDatabaseHandler(object):
class Meta:

interface = IDatabase
label = 'mysql'

def connect(self):
...

handler.register(MyDatabaseHandler)

cement.core.handler.registered(handler_type, handler_label)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.handler.registered() instead.

—

Check if a handler is registered.

Parameters

• handler_type – The type of handler (interface label)

• handler_label – The label of the handler

3.8. API Reference 53

Cement Framework, Release 2.10.12

Returns True if the handler is registered, False otherwise

Return type boolean

cement.core.handler.resolve(handler_type, handler_def, raise_error=True)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.handler.resolve() instead.

—

Resolves the actual handler, as it can be either a string identifying the handler to load from back-
end.__handlers__, or it can be an instantiated or non-instantiated handler class.

Parameters

• handler_type – The type of handler (aka the interface label)

• hander_def – The handler as defined in CementApp.Meta.

• raise_error (boolean) – Whether or not to raise an exception if unable to resolve
the handler.

Returns The instantiated handler object.

cement.core.hook

Cement core hooks module.

class cement.core.hook.HookManager(use_backend_globals=False)
Bases: object

Manages the hook system to define, get, run, etc hooks within the the Cement Framework and applications Built
on Cement (tm).

Parameters use_backend_globals – Whether to use backend globals (backward compati-
bility and deprecated).

define(name)
Define a hook namespace that the application and plugins can register hooks in.

Parameters name – The name of the hook, stored as hooks[‘name’]

Raises cement.core.exc.FrameworkError

Usage:

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
app.hook.define('my_hook_name')

defined(hook_name)
Test whether a hook name is defined.

Parameters hook_name – The name of the hook. I.e.
my_hook_does_awesome_things.

Returns True if the hook is defined, False otherwise.

Return type boolean

Usage:

54 Chapter 3. Documentation

https://docs.python.org/3.4/library/functions.html#object

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
app.hook.defined('some_hook_name'):

do something about it
pass

register(name, func, weight=0)
Register a function to a hook. The function will be called, in order of weight, when the hook is run.

Parameters

• name – The name of the hook to register too. I.e. pre_setup, post_run, etc.

• func – The function to register to the hook. This is an un-instantiated, non-instance
method, simple function.

• weight (int) – The weight in which to order the hook function.

Usage:

from cement.core.foundation import CementApp

def my_hook_func(app):
do something with app?
return True

with CementApp('myapp') as app:
app.hook.define('my_hook_name')
app.hook.register('my_hook_name', my_hook_func)

run(name, *args, **kwargs)
Run all defined hooks in the namespace. Yields the result of each hook function run.

Parameters

• name – The name of the hook function.

• args – Additional arguments to be passed to the hook functions.

• kwargs – Additional keyword arguments to be passed to the hook functions.

Raises FrameworkError

Usage:

from cement.core.foundation import CementApp

def my_hook_func(app):
do something with app?
return True

with CementApp('myapp') as app:
app.hook.define('my_hook_name')
app.hook.register('my_hook_name', my_hook_func)
for res in app.hook.run('my_hook_name', self):

do something with the result?
pass

cement.core.hook.define(name)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.hook.define() instead.

3.8. API Reference 55

Cement Framework, Release 2.10.12

—

Define a hook namespace that plugins can register hooks in.

Parameters name – The name of the hook, stored as hooks[‘name’]

Raises cement.core.exc.FrameworkError

Usage:

from cement.core import hook

hook.define('myhookname_hook')

cement.core.hook.defined(hook_name)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.hook.defined() instead.

—

Test whether a hook name is defined.

Parameters hook_name – The name of the hook. I.e. my_hook_does_awesome_things.

Returns True if the hook is defined, False otherwise.

Return type boolean

cement.core.hook.register(name, func, weight=0)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.hook.register() instead.

—

Register a function to a hook. The function will be called, in order of weight, when the hook is run.

Parameters

• name – The name of the hook to register too. I.e. pre_setup, post_run, etc.

• func – The function to register to the hook. This is an un-instantiated, non-instance
method, simple function.

• weight (int) – The weight in which to order the hook function.

Usage:

from cement.core import hook

def my_hook(*args, **kwargs):
do something here
res = 'Something to return'
return res

hook.register('post_setup', my_hook)

cement.core.hook.run(name, *args, **kwargs)
DEPRECATION WARNING: This function is deprecated as of Cement 2.7.x and will be removed in future
versions of Cement. Use CementApp.hook.run() instead.

—

Run all defined hooks in the namespace. Yields the result of each hook function run.

Parameters

56 Chapter 3. Documentation

Cement Framework, Release 2.10.12

• name – The name of the hook function.

• args – Additional arguments to be passed to the hook functions.

• kwargs – Additional keyword arguments to be passed to the hook functions.

Raises FrameworkError

Usage:

from cement.core import hook

for result in hook.run('hook_name'):
do something with result from each hook function
...

cement.core.interface

Cement core interface module.

class cement.core.interface.Attribute(description)
Bases: object

An interface attribute definition.

Parameters description – The description of the attribute.

class cement.core.interface.Interface
Bases: object

An interface definition class. All Interfaces should subclass from here. Note that this is not an implementation
and should never be used directly.

cement.core.interface.list()
DEPRECATION WARNING: This function is deprecated as of Cement 2.9 in favor of the Cemen-
tApp.handler.list_types() function, and will be removed in future versions of Cement.

Return a list of defined interfaces (handler types).

Returns List of defined interfaces

Return type list

cement.core.interface.validate(interface, obj, members=[], meta=[’interface’, ’label’, ’con-
fig_defaults’, ’config_section’])

A wrapper to validate interfaces.

Parameters

• interface – The interface class to validate against

• obj – The object to validate.

• members – The object members that must exist.

• meta – The meta object members that must exist.

Raises cement.core.exc.InterfaceError

cement.core.log

Cement core log module.

3.8. API Reference 57

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object

Cement Framework, Release 2.10.12

class cement.core.log.CementLogHandler(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

Base class that all Log Handlers should sub-class from.

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

interface
The interface that this class implements.

alias of ILog

label = None
The string identifier of this handler.

class cement.core.log.ILog
Bases: cement.core.interface.Interface

This class defines the Log Handler Interface. Classes that implement this handler must provide the methods and
attributes defined below.

Implementations do not subclass from interfaces.

Usage:

from cement.core import log

class MyLogHandler(object):
class Meta:

interface = log.ILog
label = 'my_log_handler'

...

class IMeta
Interface meta-data.

label = 'log'
The string identifier of the interface.

validator(obj)
The interface validator function.

_setup()
The _setup function is called during application initialization and must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

debug(msg)
Log to the ‘DEBUG’ facility.

Parameters msg – The message to log.

error(msg)
Log to the ‘ERROR’ facility.

Parameters msg – The message to log.

fatal(msg)
Log to the ‘FATAL’ facility.

Parameters msg – The message to log.

58 Chapter 3. Documentation

Cement Framework, Release 2.10.12

get_level()
Return a string representation of the log level.

info()
Log to the ‘INFO’ facility.

Parameters msg – The message to log.

set_level()

Set the log level. Must except atleast one of: ['INFO', 'WARNING', 'ERROR', 'DEBUG',
or 'FATAL'].

warning(msg)
Log to the ‘WARNING’ facility.

Parameters msg – The message to log.

cement.core.log.log_validator(klass, obj)
Validates an handler implementation against the ILog interface.

cement.core.mail

Cement core mail module.

class cement.core.mail.CementMailHandler(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

Base class that all Mail Handlers should sub-class from.

Configuration Options

This handler supports the following configuration options under a

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

config_defaults = {'bcc': [], 'cc': [], 'from_addr': 'noreply@example.com', 'subject': 'Default Subject Line', 'subject_prefix': '', 'to': []}
Configuration default values

interface
The interface that this handler class implements.

alias of IMail

label = None
String identifier of this handler implementation.

_setup(app_obj)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

class cement.core.mail.IMail
Bases: cement.core.interface.Interface

This class defines the Mail Handler Interface. Classes that implement this handler must provide the methods
and attributes defined below.

Implementations do not subclass from interfaces.

Configuration

3.8. API Reference 59

Cement Framework, Release 2.10.12

Implementations much support the following configuration settings:

• to - Default to addresses (list, or comma separated depending on the ConfigHandler in use)

• from_addr - Default from_addr address

• cc - Default cc addresses (list, or comma separated depending on the ConfigHandler in use)

• bcc - Default bcc addresses (list, or comma separated depending on the ConfigHandler in use)

• subject - Default subject

• subject_prefix - Additional string to prepend to the subject

Usage

from cement.core import mail

class MyMailHandler(object):
class Meta:

interface = mail.IMail
label = 'my_mail_handler'

...

class IMeta
Interface meta-data.

label = 'mail'
The label (or type identifier) of the interface.

validator(obj)
Interface validator function.

_setup()
The _setup function is called during application initialization and must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

send(**kwargs)
Send a mail message. Keyword arguments override configuration defaults (cc, bcc, etc).

Parameters

• body (multiline string) – The message body to send

• to (list) – List of recipients (generally email addresses)

• from_addr (str) – Address (generally email) of the sender

• cc (list) – List of CC Recipients

• bcc (list) – List of BCC Recipients

• subject (str) – Message subject line

Returns Boolean (True if message is sent successfully, False otherwise)

Usage

Using all configuration defaults
app.send('This is my message body')

(continues on next page)

60 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

Overriding configuration defaults
app.send('My message body'

to=['john@example.com'],
from_addr='me@example.com',
cc=['jane@example.com', 'rita@example.com'],
subject='This is my subject',
)

cement.core.mail.mail_validator(klass, obj)
Validates a handler implementation against the IMail interface.

cement.core.meta

Cement core meta functionality.

class cement.core.meta.Meta(**kwargs)
Bases: object

Model that acts as a container class for a meta attributes for a larger class. It stuffs any kwarg it gets in it’s init
as an attribute of itself.

class cement.core.meta.MetaMixin(*args, **kwargs)
Bases: object

Mixin that provides the Meta class support to add settings to instances of slumber objects. Meta settings cannot
start with a _.

cement.core.output

Cement core output module.

class cement.core.output.CementOutputHandler(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

Base class that all Output Handlers should sub-class from.

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

interface
The interface that this class implements.

alias of IOutput

label = None
The string identifier of this handler.

class cement.core.output.IOutput
Bases: cement.core.interface.Interface

This class defines the Output Handler Interface. Classes that implement this handler must provide the methods
and attributes defined below.

Implementations do not subclass from interfaces.

Usage:

3.8. API Reference 61

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object

Cement Framework, Release 2.10.12

from cement.core import output

class MyOutputHandler(object):
class Meta:

interface = output.IOutput
label = 'my_output_handler'

...

class IMeta
Interface meta-data.

label = 'output'
The string identifier of the interface.

validator(obj)
The interface validator function.

_setup()
The _setup function is called during application initialization and must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

render(*args, **kwargs)
Render the data_dict into output in some fashion. This function must access both *args and **kwargs
to allow an application to mix output handlers that support different features.

Parameters data_dict – The dictionary whose data we need to render into output.

Returns string or unicode string or None

class cement.core.output.TemplateOutputHandler(*args, **kw)
Bases: cement.core.output.CementOutputHandler

Base class for template base output handlers.

load_template(template_path)
Loads a template file first from self.app._meta.template_dirs and secondly from self.
app._meta.template_module. The template_dirs have presedence. :param template_path:
The secondary path of the template after

either template_module or template_dirs prefix (set via CementApp.Meta)

Returns The content of the template (str)

Raises FrameworkError if the template does not exist in either the template_module or
template_dirs.

load_template_with_location(template_path)
Loads a template file first from self.app._meta.template_dirs and secondly from self.
app._meta.template_module. The template_dirs have presedence.

Parameters template_path – The secondary path of the template after either
template_module or template_dirs prefix (set via CementApp.Meta)

Returns A tuple that includes the content of the template (str), the type of template (str which
is one of: directory, or module), and the path (str) of the directory or module)

Raises FrameworkError if the template does not exist in either the template_module or
template_dirs.

62 Chapter 3. Documentation

Cement Framework, Release 2.10.12

cement.core.output.output_validator(klass, obj)
Validates an handler implementation against the IOutput interface.

cement.core.plugin

Cement core plugins module.

class cement.core.plugin.CementPluginHandler(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

Base class that all Plugin Handlers should sub-class from.

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

interface
The interface that this class implements.

alias of IPlugin

label = None
The string identifier of this handler.

class cement.core.plugin.IPlugin
Bases: cement.core.interface.Interface

This class defines the Plugin Handler Interface. Classes that implement this handler must provide the methods
and attributes defined below.

Implementations do not subclass from interfaces.

Usage:

from cement.core import plugin

class MyPluginHandler(object):
class Meta:

interface = plugin.IPlugin
label = 'my_plugin_handler'

...

_setup()
The _setup function is called during application initialization and must ‘setup’ the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

get_disabled_plugins()
Returns a list of plugins that are disabled in the config.

get_enabled_plugins()
Returns a list of plugins that are enabled in the config.

get_loaded_plugins()
Returns a list of plugins that have been loaded.

load_plugin()
Load a plugin whose name is ‘plugin_name’.

Parameters plugin_name – The name of the plugin to load.

load_plugins()
Load all plugins from plugin_list.

3.8. API Reference 63

Cement Framework, Release 2.10.12

Parameters plugin_list – A list of plugin names to load.

cement.core.plugin.plugin_validator(klass, obj)
Validates an handler implementation against the IPlugin interface.

3.8.2 Cement Utility Modules

cement.utils.fs

Common File System Utilities.

cement.utils.fs.abspath(path)
Return an absolute path, while also expanding the ‘~’ user directory shortcut.

Parameters path – The original path to expand.

Return type str

cement.utils.fs.backup(path, suffix=’.bak’)
Rename a file or directory safely without overwriting an existing backup of the same name.

Parameters

• path – The path to the file or directory to make a backup of.

• suffix – The suffix to rename files with.

Returns The new path of backed up file/directory

Return type str

cement.utils.shell

Common Shell Utilities.

class cement.utils.shell.Prompt(text=None, *args, **kw)
Bases: cement.core.meta.MetaMixin

A wrapper around raw_input or input (py3) whose purpose is to limit the redundent tasks of gather usr input.
Can be used in several ways depending on the use case (simple input, options, and numbered selection).

Parameters text – The text displayed at the input prompt.

Usage:

Simple prompt to halt operations and wait for user to hit enter:

p = shell.Prompt("Press Enter To Continue", default='ENTER')

$ python myapp.py
Press Enter To Continue

$

Provide a numbered list for longer selections:

p = Prompt("Where do you live?",
options=[

'San Antonio, TX',
'Austin, TX',

(continues on next page)

64 Chapter 3. Documentation

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Cement Framework, Release 2.10.12

(continued from previous page)

'Dallas, TX',
'Houston, TX',
],

numbered = True,
)

Where do you live?

1: San Antonio, TX
2: Austin, TX
3: Dallas, TX
4: Houston, TX

Enter the number for your selection:

Create a more complex prompt, and process the input from the user:

class MyPrompt(Prompt):
class Meta:

text = "Do you agree to the terms?"
options = ['Yes', 'no', 'maybe-so']
options_separator = '|'
default = 'no'
clear = True
max_attempts = 99

def process_input(self):
if self.input.lower() == 'yes':

do something crazy
pass

else:
don't do anything... maybe exit?
print("User doesn't agree! I'm outa here")
sys.exit(1)

MyPrompt()

$ python myapp.py
[TERMINAL CLEAR]

Do you agree to the terms? [Yes|no|maybe-so] no
User doesn't agree! I'm outa here

$ echo $?

$ 1

class Meta
Optional meta-data (can also be passed as keyword arguments to the parent class).

auto = True
Whether or not to automatically prompt() the user once the class is instantiated.

case_insensitive = True
Whether to treat user input as case insensitive (only used to compare user input with available op-
tions).

3.8. API Reference 65

Cement Framework, Release 2.10.12

clear = False
Whether or not to clear the terminal when prompting the user.

clear_command = 'clear'
Command to issue when clearing the terminal.

default = None
A default value to use if the user doesn’t provide any input

max_attempts = 10
Max attempts to get proper input from the user before giving up.

max_attempts_exception = True
Raise an exception when max_attempts is hit? If not, Prompt passes the input through as None.

numbered = False
Display options in a numbered list, where the user can enter a number. Useful for long selections.

options = None
Options to provide to the user. If set, the input must match one of the items in the options selection.

options_separator = ','
Separator to use within the option selection (non-numbered)

selection_text = 'Enter the number for your selection:'
The text to display along with the numbered selection for user input.

process_input()
Does not do anything. Is intended to be used in a sub-class to handle user input after it is prompted.

prompt()
Prompt the user, and store their input as self.input.

cement.utils.shell.exec_cmd(cmd_args, *args, **kw)
Execute a shell call using Subprocess. All additional *args and **kwargs are passed directly to subpro-
cess.Popen. See Subprocess for more information on the features of Popen().

Parameters

• cmd_args (list.) – List of command line arguments.

• args – Additional arguments are passed to Popen().

• kwargs – Additional keyword arguments are passed to Popen().

Returns The (stdout, stderror, return_code) of the command.

Return type tuple

Usage:

from cement.utils import shell

stdout, stderr, exitcode = shell.exec_cmd(['echo', 'helloworld'])

cement.utils.shell.exec_cmd2(cmd_args, *args, **kw)
Similar to exec_cmd, however does not capture stdout, stderr (therefore allowing it to print to console). All
additional *args and **kwargs are passed directly to subprocess.Popen. See Subprocess for more information
on the features of Popen().

Parameters

• cmd_args (list.) – List of command line arguments.

• args – Additional arguments are passed to Popen().

66 Chapter 3. Documentation

http://docs.python.org/library/subprocess.html
https://docs.python.org/3.4/library/stdtypes.html#tuple
http://docs.python.org/library/subprocess.html

Cement Framework, Release 2.10.12

• kwargs – Additional keyword arguments are passed to Popen().

Returns The integer return code of the command.

Return type int

Usage:

from cement.utils import shell

exitcode = shell.exec_cmd2(['echo', 'helloworld'])

cement.utils.shell.spawn_process(target, start=True, join=False, *args, **kwargs)
A quick wrapper around multiprocessing.Process(). By default the start() function will be called before the
spawned process object is returned. See MultiProcessing for more information on the features of Process().

Parameters

• target – The target function to execute in the sub-process.

• start – Call start() on the process before returning the process object.

• join – Call join() on the process before returning the process object. Only called if
start=True.

• args – Additional arguments are passed to Process().

• kwargs – Additional keyword arguments are passed to Process().

Returns The process object returned by Process().

Usage:

from cement.utils import shell

def add(a, b):
print(a + b)

p = shell.spawn_process(add, args=(12, 27))
p.join()

cement.utils.shell.spawn_thread(target, start=True, join=False, *args, **kwargs)
A quick wrapper around threading.Thread(). By default the start() function will be called before the spawned
thread object is returned See Threading for more information on the features of Thread().

Parameters

• target – The target function to execute in the thread.

• start – Call start() on the thread before returning the thread object.

• join – Call join() on the thread before returning the thread object. Only called if
start=True.

• args – Additional arguments are passed to Thread().

• kwargs – Additional keyword arguments are passed to Thread().

Returns The thread object returned by Thread().

Usage:

3.8. API Reference 67

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/threading.html

Cement Framework, Release 2.10.12

from cement.utils import shell

def add(a, b):
print(a + b)

t = shell.spawn_thread(add, args=(12, 27))
t.join()

cement.utils.misc

Misc utilities.

cement.utils.misc.init_defaults(*sections)
Returns a standard dictionary object to use for application defaults. If sections are given, it will create a nested
dict for each section name.

Parameters sections – Section keys to create nested dictionaries for.

Returns Dictionary of nested dictionaries (sections)

Return type dict

from cement.core import foundation
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'section2', 'section3')
defaults['myapp']['debug'] = False
defaults['section2']['foo'] = 'bar
defaults['section3']['foo2'] = 'bar2'

app = foundation.CementApp('myapp', config_defaults=defaults)

cement.utils.misc.is_true(item)
Given a value, determine if it is one of [True, ‘True’, ‘true’, 1, ‘1’].

Parameters item – The item to convert to a boolean.

Returns True if item is in [True, 'True', 'true', 1, '1'], False otherwise.

Return type boolean

cement.utils.misc.minimal_logger(namespace, debug=False)
Setup just enough for cement to be able to do debug logging. This is the logger used by the Cement framework,
which is setup and accessed before the application is functional (and more importantly before the applications
log handler is usable).

Parameters

• namespace – The logging namespace. This is generally ‘__name__’ or anything you
want.

• debug (boolean) – Toggle debug output. Default: False

Returns Logger object

from cement.utils.misc import minimal_logger
LOG = minimal_logger('cement')
LOG.debug('This is a debug message')

68 Chapter 3. Documentation

https://docs.python.org/3.4/library/stdtypes.html#dict

Cement Framework, Release 2.10.12

cement.utils.misc.rando(salt=None)
Generate a random MD5 hash for whatever purpose. Useful for testing or any other time that something random
is required.

Parameters salt – Optional ‘salt’, if None then random() is used.

Returns Random MD5 hash (str).

cement.utils.misc.random()→ x in the interval [0, 1).

cement.utils.misc.wrap(text, width=77, indent=”, long_words=False, hyphens=False)
Wrap text for cleaner output (this is a simple wrapper around textwrap.TextWrapper in the standard library).

Parameters

• text – The text to wrap

• width – The max width of a line before breaking

• indent – String to prefix subsequent lines after breaking

• long_words – Break on long words

• hyphens – Break on hyphens

Returns str(text)

cement.utils.test

Cement testing utilities.

class cement.utils.test.CementCoreTestCase(*args, **kw)
Bases: cement.utils.test.CementTestCase

class cement.utils.test.CementExtTestCase(*args, **kw)
Bases: cement.utils.test.CementTestCase

class cement.utils.test.CementTestCase(*args, **kw)
Bases: unittest.case.TestCase

A sub-class of unittest.TestCase.

app_class
The test class that is used by self.make_app to create an app.

alias of TestApp

eq(a, b, msg=None)
Shorthand for ‘assert a == b, “%r != %r” % (a, b)’.

make_app(*args, **kw)
Create a generic app using TestApp. Arguments and Keyword Arguments are passed to the app.

ok(expr, msg=None)
Shorthand for assert.

reset_backend()
Remove all registered hooks and handlers from the backend.

setUp()
Sets up self.app with a generic TestApp(). Also resets the backend hooks and handlers so that everytime
an app is created it is setup clean each time.

tearDown()
Tears down the test environment (if necessary), removes any temporary files/directories, etc.

3.8. API Reference 69

Cement Framework, Release 2.10.12

class cement.utils.test.TestApp(label=None, **kw)
Bases: cement.core.foundation.CementApp

Basic CementApp for generic testing.

class cement.utils.test.raises
Test must raise one of expected exceptions to pass.

Example use:

@raises(TypeError, ValueError)
def test_raises_type_error():

raise TypeError("This test passes")

@raises(Exception)
def test_that_fails_by_passing():

pass

If you want to test many assertions about exceptions in a single test, you may want to use assert_raises instead.

cement.utils.test.ok(expr, msg=None)
Shorthand for assert. Saves 3 whole characters!

cement.utils.test.eq(a, b, msg=None)
Shorthand for ‘assert a == b, “%r != %r” % (a, b)

3.8.3 Cement Extension Modules

cement.ext.ext_alarm

The Alarm Extension provides easy access to setting an application alarm to handle timing out operations. See the
Python Signal Library.

Requirements

• No external dependencies.

• Only available on Unix/Linux

Configuration

This extension does not honor any application configuration settings.

Usage

import time
from cement.core.foundation import CementApp
from cement.core.exc import CaughtSignal

class MyApp(CementApp):
class Meta:

label = 'myapp'

(continues on next page)

70 Chapter 3. Documentation

https://docs.python.org/3.5/library/signal.html

Cement Framework, Release 2.10.12

(continued from previous page)

exit_on_close = True
extensions = ['alarm']

with MyApp() as app:
try:

app.run()
app.alarm.set(3, "The operation timed out after 3 seconds!")

do something that takes time to operate
time.sleep(5)

app.alarm.stop()

except CaughtSignal as e:
print(e.msg)
app.exit_code = 1

Looks like:

$ python myapp.py
ERROR: The operation timed out after 3 seconds!
Caught signal 14

class cement.ext.ext_alarm.AlarmManager(*args, **kw)
Bases: object

Lets the developer easily set and stop an alarm. If the alarm exceeds the given time it will raise signal.
SIGALRM.

set(time, msg)
Set the application alarm to time seconds. If the time is exceeded signal.SIGALRM is raised.

Parameters

• time – The time in seconds to set the alarm to.

• msg – The message to display if the alarm is triggered.

stop()
Stop the application alarm.

cement.ext.ext_argcomplete

The Argcomplete Extension provides the necessary hooks to utilize the Argcomplete Library, and perform auto-
completion of command line arguments/options/sub-parsers/etc.

Requirements

• Argcomplete (pip install argcomplete)

• Argparse

This extension currently only works when using cement.ext.ext_argparse.
ArgparseArgumentHandler (default) and cement.ext.ext_argparse.ArgparseController
(new in Cement 2.8). It will not work with cement.core.controller.CementBaseController.

3.8. API Reference 71

https://docs.python.org/3.4/library/functions.html#object
https://argcomplete.readthedocs.io/en/latest/

Cement Framework, Release 2.10.12

Configuration

This extension does not honor any application configuration settings.

Usage

myapp.py

#!/usr/bin/env python

from cement.core.foundation import CementApp
from cement.ext.ext_argparse import ArgparseController, expose

class BaseController(ArgparseController):
class Meta:

label = 'base'
arguments = [

(['-f', '--foo'], dict(help='base foo option', dest='foo'))
]

@expose(hide=True)
def default(self):

print('Inside BaseController.default')

@expose()
def command1(self):

print('Inside BaseController.command1')

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['argcomplete']
handlers = [BaseController]

with MyApp() as app:
app.run()

Note the #! line, which allows us to call our script directly (specifically for this example). The Argcomplete library
requires the end-user to modify their environment in order to perform auto-completion. For this example, we are using
a non-global option for demonstration purposes only. In the real world you will need to setup Argcomplete for your
actual application entry-point name (i.e. myapp if installed as /usr/bin/myapp, etc).

$ eval "$(register-python-argcomplete myapp.py)"

$./myapp.py [tab][tab]

--debug -h
-o --help
--quiet command1

default

See the Argcomplete Documentation on how to properly integrate it’s usage into your application deployment. This
extension simply enables Argcomplete to do it’s thing on application startup.

72 Chapter 3. Documentation

https://argcomplete.readthedocs.io/en/latest/

Cement Framework, Release 2.10.12

cement.ext.ext_argparse

The Argparse Extension provides argument handling based on argparse.ArgumentParser, and is the default
argument handler used by cement.core.foundation.CementApp. In addition, this extension also provides
ArgparseController that enables rapid development via application controllers based on Argparse.

Requirements

• Python 2.7+, Python 3+

• Some features of ArgparseController are only available in Python 3 including controller and func-
tion/command aliases (Python 3+) and controller default functions/command (Python 3.4+).

Configuration

This extension does not have any application configuration settings.

Usage

The following is an example application using both the ArgparseArgumentHandler
and ArgparseController. Note that the default arg_handler is already set to
ArgparseArgumentHandler` by CementApp.

from cement.core.foundation import CementApp
from cement.ext.ext_argparse import ArgparseController, expose

class BaseController(ArgparseController):
class Meta:

label = 'base'
arguments = [

(['--base-foo'], dict(help='base foo option')),
]

@expose(hide=True)
def default(self):

Note: Default commands are only available in Python 3.4+
print('Inside BaseController.default')

if self.app.pargs.base_foo:
do something with self.app.pargs.base_foo
print('Base Foo > %s' % self.app.pargs.base_foo)

@expose(
arguments=[

(['--command1-opt'],
dict(help='option under command1', action='store_true'))

],
aliases=['cmd1'],
help='command1 is a sub-command under myapp base controller',

)
def command1(self):

print('Inside BaseController.command1')

(continues on next page)

3.8. API Reference 73

https://docs.python.org/3.4/library/argparse.html#argparse.ArgumentParser

Cement Framework, Release 2.10.12

(continued from previous page)

if self.app.pargs.command1_opt:
do something with self.app.pargs.command1_opt
pass

class EmbeddedController(ArgparseController):
class Meta:

label = 'embedded_controller'
stacked_on = 'base'
stacked_type = 'embedded'

@expose(help="command2 embedded under base controller")
def command2(self):

print('Inside EmbeddedController.command2')

class NestedController(ArgparseController):
class Meta:

label = 'nested_controller'
stacked_on = 'base'
stacked_type = 'nested'
arguments = [

(['--nested-opt'],
dict(help='option under nested-controller')),

]

@expose(help="command3 under nested-controller")
def command3(self):

print('Inside NestedController.command3')

class MyApp(CementApp):
class Meta:

label = 'myapp'
handlers = [

BaseController,
EmbeddedController,
NestedController

]

with MyApp() as app:
app.run()

The above looks like:

$ python myapp.py --help
usage: myapp.py [-h] [--debug] [--quiet] [--base-foo BASE_FOO]

{nested-controller,command1,cmd1,default,command2} ...

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
--base-foo BASE_FOO base foo option

(continues on next page)

74 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

sub-commands:
{nested-controller,command1,cmd1,default,command2}
nested-controller nested-controller controller
command1 (cmd1) command1 is a sub-command under base controller
command2 command2 embedded under base controller

$ python myapp.py --base-foo bar
Inside BaseController.default
Base Foo > bar

$ python myapp.py command1 --help
usage: myapp.py command1 [-h] [--command1-opt]

optional arguments:
-h, --help show this help message and exit
--command1-opt option under command1

$ python myapp.py command1
Inside BaseController.command1

$ python myapp.py command2
Inside EmbeddedController.command2

$ python myapp.py nested-controller --help
usage: myapp.py nested-controller [-h] [--nested-opt] {command3} ...

optional arguments:
-h, --help show this help message and exit
--nested-opt option under nested-controller

sub-commands:
{command3}
command3 command3 under nested-controller

$ python myapp.py nested-controller command3
Inside NestedController.command3

class cement.ext.ext_argparse.ArgParseArgumentHandler(*args, **kw)
Bases: cement.ext.ext_argparse.ArgparseArgumentHandler

class cement.ext.ext_argparse.ArgparseArgumentHandler(*args, **kw)
Bases: argparse.ArgumentParser, cement.core.arg.CementArgumentHandler

This class implements the cement.core.arg.IArgument interface, and sub-classes from argparse.
ArgumentParser. Please reference the argparse documentation for full usage of the class.

Arguments and Keyword arguments are passed directly to ArgumentParser on initialization.

class Meta
Handler meta-data.

ignore_unknown_arguments = False
Whether or not to ignore any arguments passed that are not defined. Default behavoir by Argparse

3.8. API Reference 75

https://docs.python.org/3.4/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3.4/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3.4/library/argparse.html#argparse.ArgumentParser

Cement Framework, Release 2.10.12

is to raise an “unknown argument” exception by Argparse.

This affectively triggers the difference between using parse_args and parse_known_args.
Unknown arguments will be accessible as unknown_args.

interface
alias of cement.core.arg.IArgument

label = 'argparse'
The string identifier of the handler.

add_argument(*args, **kw)
Add an argument to the parser. Arguments and keyword arguments are passed directly to
ArgumentParser.add_argument(). See the argparse.ArgumentParser documentation
for help.

parse(arg_list)
Parse a list of arguments, and return them as an object. Meaning an argument name of ‘foo’ will be stored
as parsed_args.foo.

Parameters arg_list – A list of arguments (generally sys.argv) to be parsed.

Returns object whose members are the arguments parsed.

class cement.ext.ext_argparse.ArgparseController(*args, **kw)
Bases: cement.core.handler.CementBaseHandler

This is an implementation of the cement.core.controller.IController interface, but as a base
class that application controllers should subclass from. Registering it directly as a handler is useless.

NOTE: This handler requires that the applications arg_handler be argparse. If using an alternative
argument handler you will need to write your own controller base class or modify this one.

NOTE: This is a re-implementation of cement.core.controller.CementBaseController. In the
future, this class will eventually replace it as the default.

Usage:

from cement.ext.ext_argparse import ArgparseController

class Base(ArgparseController):
class Meta:

label = 'base'
description = 'description at the top of --help'
epilog = "the text at the bottom of --help."
arguments = [

(['-f', '--foo'], dict(help='my foo option', dest='foo')),
]

class Second(ArgparseController):
class Meta:

label = 'second'
stacked_on = 'base'
stacked_type = 'embedded'
arguments = [

(['--foo2'], dict(help='my foo2 option', dest='foo2')),
]

class Meta
Controller meta-data (can be passed as keyword arguments to the parent class).

76 Chapter 3. Documentation

https://docs.python.org/3.4/library/argparse.html#argparse.ArgumentParser

Cement Framework, Release 2.10.12

aliases = []
A list of aliases for the controller/sub-parser. Only available in Python > 3.

arguments = []
Arguments to pass to the argument_handler. The format is a list of tuples whos items are a (list, dict
). Meaning:

[(['-f', '--foo'], dict(help='foo option', dest='foo')),]

This is equivelant to manually adding each argument to the argument parser as in the following
example:

add_argument('-f', '--foo', help='foo option', dest='foo')

config_defaults = {}
Configuration defaults (type: dict) that are merged into the applications config object for the con-
fig_section mentioned above.

config_section = None
A config [section] to merge config_defaults into. Cement will default to controller.<label> if None
is set.

default_func = 'default'
Function to call if no sub-command is passed. Note that this can not start with an _ due to backward
compatibility restraints in how Cement discovers and maps commands.

Note: Currently, default function/sub-command only functions on Python > 3.4. Previous versions
of Python/Argparse will throw the exception error: too few arguments.

description = None
Description for the sub-parser group in help output.

epilog = None
The text that is displayed at the bottom when --help is passed.

help = None
Text for the controller/sub-parser group in help output (for nested stacked controllers only).

hide = False
Whether or not to hide the controller entirely.

interface
alias of cement.core.controller.IController

label = 'base'
The string identifier for the controller.

parser_options = {}
Additional keyword arguments passed when ArgumentParser.add_parser() is called to
create this controller sub-parser. WARNING: This could break things, use at your own risk. Useful
if you need additional features from Argparse that is not built into the controller Meta-data.

stacked_on = 'base'
A label of another controller to ‘stack’ commands/arguments on top of.

stacked_type = 'embedded'
Whether to embed commands and arguments within the parent controller’s namespace, or to nest this
controller under the parent controller (making it a sub-command). Must be one of ['embedded',
'nested'].

subparser_options = {}
Additional keyword arguments passed when ArgumentParser.add_subparsers() is called

3.8. API Reference 77

Cement Framework, Release 2.10.12

to create this controller namespace. WARNING: This could break things, use at your own risk.
Useful if you need additional features from Argparse that is not built into the controller Meta-data.

title = 'sub-commands'
The title for the sub-parser group in help output.

usage = None
The text that is displayed at the top when --help is passed. Defaults to Argparse standard usage.

_post_argument_parsing()
Called on every controller just after arguments are parsed (assuming that the parser hasn’t thrown an
exception). Provides an alternative means of handling passed arguments. Note that, this function is called
on every controller, regardless of what namespace and sub-command is eventually going to be called.
Therefore, every controller can handle their arguments if the user passed them.

For example:

$ myapp --foo bar some-controller --foo2 bar2 some-command

In the above, the base controller (or a nested controller) would handle --foo, while
some-controller would handle foo2 before some-command is executed.

class Base(ArgparseController):
class Meta:

label = 'base'

arguments = [
(['-f', '--foo'],
dict(help='my foo option', dest=foo)),

]

def _post_argument_parsing(self):
if self.app.pargs.foo:

print('Got Foo Option Before Controller Dispatch')

Note that self._parser within a controller is that individual controllers sub-parser, and is not the
root parser app.args (unless you are the base controller, in which case self._parser is synony-
mous with app.args).

_pre_argument_parsing()
Called on every controller just before arguments are parsed. Provides an alternative means of adding
arguments to the controller, giving more control than using Meta.arguments.

class Base(ArgparseController):
class Meta:

label = 'base'

def _pre_argument_parsing(self):
p = self._parser
p.add_argument('-f', '--foo',

help='my foo option',
dest='foo')

def _post_argument_parsing(self):
if self.app.pargs.foo:

print('Got Foo Option Before Controller Dispatch')

_setup(app)
See IController._setup().

78 Chapter 3. Documentation

Cement Framework, Release 2.10.12

class cement.ext.ext_argparse.expose(hide=False, arguments=[], **parser_options)
Bases: object

Used to expose functions to be listed as sub-commands under the controller namespace. It also decorates the
function with meta-data for the argument parser.

Parameters

• hide (boolean) – Whether the command should be visible.

• arguments – List of tuples that define arguments to add to this commands sub-parser.

• parser_options (dict) – Additional options to pass to Argparse.

Usage:

from cement.ext.ext_argparse import ArgparseController, expose

class Base(ArgparseController):
class Meta:

label = 'base'

Note: Default functions only work in Python > 3.4
@expose(hide=True)
def default(self):

print("In Base.default()")

@expose(
help='this is the help message for my_command',
aliases=['my_cmd'], # only available in Python 3+
arguments=[

(['-f', '--foo'],
dict(help='foo option', action='store', dest='foo')),

]
)
def my_command(self):

print("In Base.my_command()")

cement.ext.ext_colorlog

The ColorLog Extension provides logging based on the standard logging module and is a drop-in replacement for
the default log handler cement.ext.ext_logging.LoggingLogHandler.

Requirements

• ColorLog (pip install colorlog)

Configuration

This handler honors all of the same configuration settings as the LoggingLogHandler including:

• level

• file

• to_console

• rotate

3.8. API Reference 79

https://docs.python.org/3.4/library/functions.html#object

Cement Framework, Release 2.10.12

• max_bytes

• max_files

In addition, it also supports:

• colorize_file_log

• colorize_console_log

A sample config section (in any config file) might look like:

[log.colorlog]
file = /path/to/config/file
level = info
to_console = true
rotate = true
max_bytes = 512000
max_files = 4
colorize_file_log = false
colorize_console_log = true

Usage

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['colorlog']
log_handler = 'colorlog'

with MyApp() as app:
app.run()
app.log.debug('This is my debug message')
app.log.info('This is my info message')
app.log.warning('This is my warning message')
app.log.error('This is my error message')
app.log.fatal('This is my critical message')

The colors can be customized by passing in a colors dictionary mapping overriding the ColorLogHandler.
Meta.colors meta-data:

from cement.core.foundation import CementApp
from cement.ext.ext_colorlog import ColorLogHandler

COLORS = {
'DEBUG': 'cyan',
'INFO': 'green',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'red,bg_white',

}

class MyApp(CementApp):
class Meta:

label = 'myapp'
log_handler = ColorLogHandler(colors=COLORS)

80 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Or by sub-classing and creating your own custom class:

from cement.core.foundation import CementApp
from cement.ext.ext_colorlog import ColorLogHandler

class MyCustomLog(ColorLogHandler):
class Meta:

label = 'my_custom_log'
colors = {

'DEBUG': 'cyan',
'INFO': 'green',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'red,bg_white',

}

class MyApp(CementApp):
class Meta:

label = 'myapp'
log_handler = MyCustomLog

class cement.ext.ext_colorlog.ColorLogHandler(*args, **kw)
Bases: cement.ext.ext_logging.LoggingLogHandler

This class implements the cement.core.log.ILog interface. It is a sub-class of cement.ext.
ext_logging.LoggingLogHandler which is based on the standard logging library, and adds col-
orized console output using the ColorLog library.

Note This extension has an external dependency on colorlog. You must include colorlog in your ap-
plications dependencies as Cement explicitly does not include external dependencies for optional extensions.

class Meta
Handler meta-data.

colors = {'CRITICAL': 'red,bg_white', 'DEBUG': 'cyan', 'ERROR': 'red', 'INFO': 'green', 'WARNING': 'yellow'}
Color mapping for each log level

config_defaults = {'colorize_console_log': True, 'colorize_file_log': False, 'file': None, 'level': 'INFO', 'max_bytes': 512000, 'max_files': 4, 'rotate': False, 'to_console': True}
Default configuration settings. Will be overridden by the same settings in any application configu-
ration file under a [log.colorlog] block.

formatter_class
alias of __builtin__.ColoredFormatter

formatter_class_without_color
alias of logging.Formatter

label = 'colorlog'
The string identifier of the handler.

cement.ext.ext_configobj

The ConfigObj Extension provides configuration handling based on configobj. It is a drop-in replacement for the
default config handler cement.ext.ext_configparser.ConfigParserConfigHandler.

One of the primary features of ConfigObj is that you can access the application configuration as a dictionary object.

3.8. API Reference 81

https://pypi.python.org/pypi/colorlog
https://docs.python.org/3.4/library/logging.html#logging.Formatter
http://www.voidspace.org.uk/python/configobj.html

Cement Framework, Release 2.10.12

Requirements

• ConfigObj (pip install configobj)

Configuration

This extension does not honor any application configuration settings.

Usage

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['configobj']
config_handler = 'configobj'

with MyApp() as app:
app.run()

get a config setting
app.config['myapp']['foo']

set a config setting
app.config['myapp']['foo'] = 'bar2'

etc.

class cement.ext.ext_configobj.ConfigObjConfigHandler(*args, **kw)
Bases: cement.core.config.CementConfigHandler, ConfigObj

This class implements the IConfig interface, and sub-classes from configobj.ConfigObj, which is an external
library and not included with Python. Please reference the ConfigObj documentation for full usage of the class.

Arguments and keyword arguments are passed directly to ConfigObj on initialization.

class Meta
Handler meta-data.

interface
alias of cement.core.config.IConfig

_parse_file(file_path)
Parse a configuration file at file_path and store it.

Parameters file_path – The file system path to the configuration file.

Returns boolean (True if file was read properly, False otherwise)

_setup(app_obj)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

82 Chapter 3. Documentation

http://www.voidspace.org.uk/python/configobj.html

Cement Framework, Release 2.10.12

add_section(section)
Add a section to the configuration.

Parameters section – The configuration [section] to add.

get(section, key)
Get a value for a given key under section.

Parameters

• section – The configuration [section].

• key – The configuration key under the section.

Returns unknown (the value of the key)

get_section_dict(section)
Return a dict representation of a section.

Parameters section – The section of the configuration. I.e. [block_section]

Returns dict

get_sections()
Return a list of [section] that exist in the configuration.

Returns list

has_section(section)
Return True/False whether the configuration [section] exists.

Parameters section – The section to check for.

Returns bool

keys(section)
Return a list of keys for a given section.

Parameters section – The configuration [section].

merge(dict_obj, override=True)
Merge a dictionary into our config. If override is True then existing config values are overridden by those
passed in.

Parameters

• dict_obj – A dictionary of configuration keys/values to merge into our existing
config (self).

• override – Whether or not to override existing values in the config.

Returns None

set(section, key, value)
Set a configuration key value under [section].

Parameters

• section – The configuration [section].

• key – The configuration key under the section.

• value – The value to set the key to.

Returns None

3.8. API Reference 83

Cement Framework, Release 2.10.12

cement.ext.ext_configparser

The ConfigParser Extension provides configuration handling based on the standard ConfigParser, and is the de-
fault configuration handler used by Cement.

Requirements

• No external dependencies.

Configuration

This extension does not honor any application configuration settings.

Usage

from cement.core.foundation import CementApp

with CementApp() as app:
app.run()

get a config setting
app.config.get('myapp', 'foo')

set a config setting
app.config.set('myapp', 'foo', 'bar2')

etc.

class cement.ext.ext_configparser.ConfigParserConfigHandler(*args, **kw)
Bases: cement.core.config.CementConfigHandler, ConfigParser.RawConfigParser

This class is an implementation of the IConfig interface. It handles configuration file parsing and the like by
sub-classing from the standard ConfigParser library. Please see the ConfigParser documentation for full usage
of the class.

Additional arguments and keyword arguments are passed directly to RawConfigParser on initialization.

class Meta
Handler meta-data.

interface
alias of cement.core.config.IConfig

label = 'configparser'
The string identifier of this handler.

_parse_file(file_path)
Parse a configuration file at file_path and store it.

Parameters file_path – The file system path to the configuration file.

Returns boolean (True if file was read properly, False otherwise)

add_section(section)
Adds a block section to the config.

Parameters section – The section to add.

84 Chapter 3. Documentation

http://docs.python.org/library/configparser.html

Cement Framework, Release 2.10.12

get_section_dict(section)
Return a dict representation of a section.

Parameters section – The section of the configuration. I.e. [block_section]

Returns Dictionary reprisentation of the config section.

Return type dict

get_sections()
Return a list of configuration sections or [blocks].

Returns List of sections.

Return type list

keys(section)
Return a list of keys within ‘section’.

Parameters section – The config section (I.e. [block_section]).

Returns List of keys in the section.

Return type list

merge(dict_obj, override=True)
Merge a dictionary into our config. If override is True then existing config values are overridden by those
passed in.

Parameters

• dict_obj – A dictionary of configuration keys/values to merge into our existing
config (self).

• override – Whether or not to override existing values in the config.

cement.ext.ext_daemon

The Daemon Extension enables applications Built on Cement (tm) to easily perform standard daemonization functions.

Requirements

• Python 2.6+, Python 3+

• Available on Unix/Linux only

Features

• Configurable runtime user and group

• Adds the --daemon command line option

• Adds app.daemonize() function to trigger daemon functionality where necessary (either in a cement
pre_run hook or an application controller sub-command, etc)

• Manages a pid file including cleanup on app.close()

3.8. API Reference 85

Cement Framework, Release 2.10.12

Configuration

The daemon extension is configurable with the following settings under the [daemon] section.

• user - The user name to run the process as. Default: os.getlogin()

• group - The group name to run the process as. Default: The primary group of the ‘user’.

• dir - The directory to run the process in. Default: /

• pid_file - The filesystem path to store the PID (Process ID) file. Default: None

• umask - The umask value to pass to os.umask(). Default: 0

Configurations can be passed as defaults to a CementApp:

from cement.core.foundation import CementApp
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'daemon')
defaults['daemon']['user'] = 'myuser'
defaults['daemon']['group'] = 'mygroup'
defaults['daemon']['dir'] = '/var/lib/myapp/'
defaults['daemon']['pid_file'] = '/var/run/myapp/myapp.pid'
defaults['daemon']['umask'] = 0

app = CementApp('myapp', config_defaults=defaults)

Application defaults are then overridden by configurations parsed via a [demon] config section in any of the appli-
cations configuration paths. An example configuration block would look like:

[daemon]
user = myuser
group = mygroup
dir = /var/lib/myapp/
pid_file = /var/run/myapp/myapp.pid
umask = 0

Usage

The following example shows how to add the daemon extension, as well as trigger daemon functionality before app.
run() is called.

from time import sleep
from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['daemon']

with MyApp() as app:
app.daemonize()
app.run()

count = 0
while True:

count = count + 1
(continues on next page)

86 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

print('Iteration: %s' % count)
sleep(10)

An alternative to the above is to put the daemonize() call within a framework hook:

def make_daemon(app):
app.daemonize()

def load(app):
app.hook.register('pre_run', make_daemon)

Finally, some applications may prefer to only daemonize certain sub-commands rather than the entire parent applica-
tion. For example:

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class MyBaseController(CementBaseController):
class Meta:

label = 'base'

@expose(help="run the daemon command.")
def run_forever(self):

from time import sleep
self.app.daemonize()

count = 0
while True:

count = count + 1
print(count)
sleep(10)

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = MyBaseController
extensions = ['daemon']

with MyApp() as app:
app.run()

By default, even after app.daemonize() is called. . . the application will continue to run in the foreground, but
will still manage the pid and user/group switching. To detach a process and send it to the background you simply pass
the --daemon option at command line.

$ python example.py --daemon

$ ps -x | grep example
37421 ?? 0:00.01 python example2.py --daemon
37452 ttys000 0:00.00 grep example

class cement.ext.ext_daemon.Environment(**kw)
Bases: object

This class provides a mechanism for altering the running processes environment.

3.8. API Reference 87

https://docs.python.org/3.4/library/functions.html#object

Cement Framework, Release 2.10.12

Optional Arguments:

Parameters

• stdin – A file to read STDIN from. Default: /dev/null

• stdout – A file to write STDOUT to. Default: /dev/null

• stderr – A file to write STDERR to. Default: /dev/null

• dir – The directory to run the process in.

• pid_file – The filesystem path to where the PID (Process ID) should be written to.
Default: None

• user – The user name to run the process as. Default: os.getlogin()

• group – The group name to run the process as. Default: The primary group of os.
getlogin().

• umask – The umask to pass to os.umask(). Default: 0

_write_pid_file()
Writes os.getpid() out to self.pid_file.

daemonize()
Fork the current process into a daemon.

References:

UNIX Programming FAQ: 1.7 How do I get my program to act like a daemon? http://www.unixguide.
net/unix/programming/1.7.shtml http://www.faqs.org/faqs/unix-faq/programmer/faq/

Advanced Programming in the Unix Environment

23. Richard Stevens, 1992, Addison-Wesley, ISBN 0-201-56317-7.

switch()
Switch the current process’s user/group to self.user, and self.group. Change directory to self.
dir, and write the current pid out to self.pid_file.

cement.ext.ext_daemon.cleanup(app)
After application run time, this hook just attempts to clean up the pid_file if one was set, and exists.

cement.ext.ext_daemon.daemonize()
This function switches the running user/group to that configured in config['daemon']['user'] and
config['daemon']['group']. The default user is os.getlogin() and the default group is that user’s
primary group. A pid_file and directory to run in is also passed to the environment.

It is important to note that with the daemon extension enabled, the environment will switch user/group/set pid/etc
regardless of whether the --daemon option was passed at command line or not. However, the process will only
‘daemonize’ if the option is passed to do so. This allows the program to run exactly the same in forground or
background.

cement.ext.ext_daemon.extend_app(app)
Adds the --daemon argument to the argument object, and sets the default [daemon] config section options.

cement.ext.ext_dummy

The Dummy Extension provides several ‘placeholder’ type handlers to either mock operations or provide local-only
usage during development. A perfect example is the DummyMailHandler that can be use during development or
staging to prevent real email messages from being sent externally.

88 Chapter 3. Documentation

http://www.unixguide.net/unix/programming/1.7.shtml
http://www.unixguide.net/unix/programming/1.7.shtml
http://www.faqs.org/faqs/unix-faq/programmer/faq/

Cement Framework, Release 2.10.12

Requirements

• No external dependencies

Configuration

• See each handler’s documentation regarding what configurations they support.

Usage

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['dummy']
output_handler = 'dummy'
mail_handler = 'dummy'

with MyApp() as app:
app.run()

class cement.ext.ext_dummy.DummyMailHandler(*args, **kw)
Bases: cement.core.mail.CementMailHandler

This class implements the cement.core.mail.IMail interface, but is intended for use in development as
no email is actually sent.

Usage

class MyApp(CementApp):
class Meta:

label = 'myapp'
mail_handler = 'dummy'

with MyApp() as app:
app.run()

app.mail.send('This is my fake message',
subject='This is my subject',
to=['john@example.com', 'rita@example.com'],
from_addr='me@example.com',
)

The above will print the following to console:

==
DUMMY MAIL MESSAGE
--

To: john@example.com, rita@example.com
From: me@example.com
CC:
BCC:
Subject: This is my subject

(continues on next page)

3.8. API Reference 89

Cement Framework, Release 2.10.12

(continued from previous page)

This is my fake message

--

Configuration

This handler supports the following configuration settings:

• to - Default to addresses (list, or comma separated depending on the ConfigHandler in use)

• from_addr - Default from_addr address

• cc - Default cc addresses (list, or comma separated depending on the ConfigHandler in use)

• bcc - Default bcc addresses (list, or comma separated depending on the ConfigHandler in use)

• subject - Default subject

• subject_prefix - Additional string to prepend to the subject

You can add these to any application configuration file under a [mail.dummy] section, for example:

~/.myapp.conf

[myapp]

set the mail handler to use
mail_handler = dummy

[mail.dummy]

default to addresses (comma separated list)
to = me@example.com

default from address
from = someone_else@example.com

default cc addresses (comma separated list)
cc = jane@example.com, rita@example.com

default bcc addresses (comma separated list)
bcc = blackhole@example.com, someone_else@example.com

default subject
subject = This is The Default Subject

additional prefix to prepend to the subject
subject_prefix = MY PREFIX >

class Meta
Handler meta-data.

label = 'dummy'
Unique identifier for this handler

send(body, **kw)
Mimic sending an email message, but really just print what would be sent to console. Keyword arguments

90 Chapter 3. Documentation

Cement Framework, Release 2.10.12

override configuration defaults (cc, bcc, etc).

Parameters

• body (multiline string) – The message body to send

• to (list) – List of recipients (generally email addresses)

• from_addr (str) – Address (generally email) of the sender

• cc (list) – List of CC Recipients

• bcc (list) – List of BCC Recipients

• subject (str) – Message subject line

Returns Boolean (True if message is sent successfully, False otherwise)

Usage

Using all configuration defaults
app.mail.send('This is my message body')

Overriding configuration defaults
app.mail.send('My message body'

to=['john@example.com'],
from_addr='me@example.com',
cc=['jane@example.com', 'rita@example.com'],
subject='This is my subject',
)

class cement.ext.ext_dummy.DummyOutputHandler(*args, **kw)
Bases: cement.core.output.CementOutputHandler

This class is an internal implementation of the cement.core.output.IOutput interface. It does not take
any parameters on initialization, and does not actually output anything.

class Meta
Handler meta-data

interface
alias of cement.core.output.IOutput

label = 'dummy'
The string identifier of this handler.

overridable = False
Whether or not to include dummy as an available to choice to override the output_handler via
command line options.

render(data_dict, template=None, **kw)
This implementation does not actually render anything to output, but rather logs it to the debug facility.

Parameters

• data_dict – The data dictionary to render.

• template – The template parameter is not used by this implementation at all.

Returns None

cement.ext.ext_genshi

The Genshi Extension module provides output templating based on the Genshi Text Templating Language.

3.8. API Reference 91

http://genshi.edgewall.org/wiki/Documentation/text-templates.html

Cement Framework, Release 2.10.12

Requirements

• Genshi (pip install genshi)

Configuration

To prepend a directory to the template_dirs list defined by the application/developer, an end-user can add the
configuration option template_dir to their application configuration file under the main config section:

[myapp]
template_dir = /path/to/my/templates

Usage

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['genshi']
output_handler = 'genshi'
template_module = 'myapp.templates'
template_dirs = [

'~/.myapp/templates',
'/usr/lib/myapp/templates',
]

with MyApp() as app:
app.run()

create some data
data = dict(foo='bar')

render the data to STDOUT (default) via a template
app.render(data, 'my_template.genshi')

Note that the above template_module and template_dirs are the auto-defined defaults but are added here for
clarity. From here, you would then put a Genshi template file in myapp/templates/my_template.genshi or
/usr/lib/myapp/templates/my_template.genshi.

class cement.ext.ext_genshi.GenshiOutputHandler(*args, **kw)
Bases: cement.core.output.TemplateOutputHandler

This class implements the IOutput interface. It provides text output from template and uses the Genshi Text
Templating Language. Please see the developer documentation on Output Handling.

class Meta
Handler meta-data.

interface
alias of cement.core.output.IOutput

render(data_dict, **kw)
Take a data dictionary and render it using the given template file.

Required Arguments:

92 Chapter 3. Documentation

http://genshi.edgewall.org/wiki/Documentation/text-templates.html
http://genshi.edgewall.org/wiki/Documentation/text-templates.html

Cement Framework, Release 2.10.12

Parameters

• data_dict – The data dictionary to render.

• template – The path to the template, after the template_module or
template_dirs prefix as defined in the application.

Returns str (the rendered template text)

Genshi Syntax Basics

Printing Variables

Hello ${user_name}

Where user_name is a variable returned from the controller. Will display:

Hello Johnny

Conditional Statements

{% if foo %}\\
Label: ${example.label}
{% end %}\\

Will only output Label: <label> if foo == True.

For Loops

{% for item in items %}\\
- ${item}

{% end %}\\

Where items is a list returned from the controller. Will display:

- list item 1
- list item 2
- list item 3

Functions

{% def greeting(name) %}\\
Hello, ${name}!
{% end %}\\

${greeting('World')}\\
${greeting('Edward')}

Will output:

Hello, World!
Hello, Edward!

Formatted Columns

{# --------------------- 78 character baseline --------------------------- #}\\

(continues on next page)

3.8. API Reference 93

Cement Framework, Release 2.10.12

(continued from previous page)

label ver description
================== ======== ==
{% for plugin in plugins %}\\
${"%-18s" % plugin['label']} ${"%-8s" % plugin['version']} ${"%-48s" % plugin[
→˓'description']}
{% end %}

Output looks like:

$ helloworld list-plugins

label ver description
================== ======== ==
example1 1.0.34 Example plugin v1.x for helloworld
example2 2.1 Example plugin v2.x for helloworld

cement.ext.ext_handlebars

The Handlebars Extension provides output templating based on the Handlebars Templating Language.

Requirements

• pybars3 (pip install pybars3)

Configuration

Application Meta-data

This extension supports the following application meta-data via CementApp.Meta:

• handlebars_helpers - A dictionary of helper functions to register with the compiler. Will override
HandlebarsOutputHandler.Meta.helpers.

• handlebars_partials - A list of partials (template file names) to search for, and pre-load before rendering tem-
plates. Will override HandlebarsOutputHandler.Meta.partials.

Template Directories

To prepend a directory to the template_dirs list defined by the application/developer, an end-user can add the
configuration option template_dir to their application configuration file under the main config section:

[myapp]
template_dir = /path/to/my/templates

Usage

94 Chapter 3. Documentation

https://github.com/wbond/pybars3

Cement Framework, Release 2.10.12

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['handlebars']
output_handler = 'handlebars'
template_module = 'myapp.templates'
template_dirs = [

'~/.myapp/templates',
'/usr/lib/myapp/templates',
]

...

Note that the above template_module and template_dirs are the auto-defined defaults but are added here
for clarity. From here, you would then put a Handlebars template file in myapp/templates/my_template.
handlebars or /usr/lib/myapp/templates/my_template.handlebars and then render a data dic-
tionary with it:

app.render(some_data, 'my_template.handlebars')

Helpers

Custom helper functions can easily be registered with the compiler via CementApp.Meta.
handlebars_helpers and/or HandlebarsOutputHandler.Meta.helpers.

def my_custom_helper(this, arg1, arg2):
do something with arg1 and arg2
if arg1 == arg2:

return True
else:

return False

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['handlebars']
output_handler = 'handlebars'
handlebars_helpers = {

'myhelper' : my_custom_helper
}

...

You would then access this in your template as:

This is my template

{{#if (myhelper this that)}}
This will only appear if myhelper returns True
{{/if}}

See the Handlebars Documentation for more information on helpers.

3.8. API Reference 95

https://github.com/wbond/pybars3

Cement Framework, Release 2.10.12

Partials

Though partials are supported by the library, there is no good way of automatically loading them in the context and
workflow of a typical Cement application. Therefore, the extension needs a list of partial template names to know
what to preload, in order to make partials work. Future versions will hopefully automate this.

Example:

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['handlebars']
output_handler = 'handlebars'
handlebars_partials = [

'header.bars',
'footer.bars',

]

Where header.bars and footer.bars are template names that will be searched for, and loaded just like other
templates loaded from template dirs. These are then referenced in templates as:

{{> "header.bars"}}
This is my template
{{> "footer.bars}}

See the Handlebars Documentation for more information on partials.

class cement.ext.ext_handlebars.HandlebarsOutputHandler(*args, **kw)
Bases: cement.core.output.TemplateOutputHandler

This class implements the IOutput interface. It provides text output from template and uses the Handlebars
Templating Language for Python via the pybars library. Please see the developer documentation on Output
Handling.

Note This extension has an external dependency on pybars3. You must include pybars3 in your applications
dependencies as Cement explicitly does not include external dependencies for optional extensions.

class Meta
Handler meta-data.

helpers = {}
Custom helpers

interface
alias of cement.core.output.IOutput

overridable = False
Whether or not to include handlebars as an available to choice to override the
output_handler via command line options.

partials = []
List of partials to preload

_setup(app)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

96 Chapter 3. Documentation

https://github.com/wbond/pybars3
http://handlebarsjs.com/
http://handlebarsjs.com/

Cement Framework, Release 2.10.12

render(data, template)
Take a data dictionary and render it using the given template file.

Required Arguments:

Parameters

• data – The data dictionary to render.

• template – The path to the template, after the template_module or
template_dirs prefix as defined in the application.

Returns str (the rendered template text)

cement.ext.ext_jinja2

The Jinja2 Extension module provides output templating based on the Jinja2 Templating Language.

Requirements

• Jinja2 (pip install Jinja2)

Configuration

To prepend a directory to the template_dirs list defined by the application/developer, an end-user can add the
configuration option template_dir to their application configuration file under the main config section:

[myapp]
template_dir = /path/to/my/templates

Usage

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['jinja2']
output_handler = 'jinja2'
template_module = 'myapp.templates'
template_dirs = [

'~/.myapp/templates',
'/usr/lib/myapp/templates',
]

with MyApp() as app:
app.run()

create some data
data = dict(foo='bar')

render the data to STDOUT (default) via a template
app.render(data, 'my_template.jinja2')

3.8. API Reference 97

http://jinja.pocoo.org/

Cement Framework, Release 2.10.12

Note that the above template_module and template_dirs are the auto-defined defaults but are added here for
clarity. From here, you would then put a Jinja2 template file in myapp/templates/my_template.jinja2 or
/usr/lib/myapp/templates/my_template.jinja2.

class cement.ext.ext_jinja2.Jinja2OutputHandler(*args, **kw)
Bases: cement.core.output.TemplateOutputHandler

This class implements the IOutput interface. It provides text output from template and uses the Jinja2 Templating
Language. Please see the developer documentation on Output Handling.

class Meta
Handler meta-data.

interface
alias of cement.core.output.IOutput

render(data_dict, template=None, **kw)
Take a data dictionary and render it using the given template file. Additional keyword arguments are
ignored.

Required Arguments:

Parameters

• data_dict – The data dictionary to render.

• template – The path to the template, after the template_module or
template_dirs prefix as defined in the application.

Returns str (the rendered template text)

cement.ext.ext_json

The JSON Extension adds the JsonOutputHandler to render output in pure JSON, as well as the
JsonConfigHandler that allows applications to use JSON configuration files as a drop-in replacement of the
default cement.ext.ext_configparser.ConfigParserConfigHandler.

Requirements

• No external dependencies.

Configuration

This extension does not support any configuration settings.

Usage

myapp.conf

{
"myapp": {

"foo": "bar"
}

}

myapp.py

98 Chapter 3. Documentation

http://jinja.pocoo.org/
http://jinja.pocoo.org/

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['json']
config_handler = 'json'

you probably don't want this to be json by default.. but you can
output_handler = 'json'

with MyApp() as app:
app.run()

create some data
data = dict(foo=app.config.get('myapp', 'foo'))

app.render(data)

In general, you likely would not set output_handler to json, but rather another type of output handler that
display readable output to the end-user (i.e. Mustache, Genshi, or Tabulate). By default Cement adds the -o command
line option to allow the end user to override the output handler. For example: passing -o json will override the
default output handler and set it to JsonOutputHandler.

See CementApp.Meta.handler_override_options.

$ python myapp.py -o json
{"foo": "bar"}

What if I Want To Use UltraJson or Something Else?

It is possible to override the backend json library module to use, for example if you wanted to use Ultra-
Json (ujson) or another drop-in replacement library. The recommended solution would be to override the
JsonOutputHandler with you’re own sub-classed version, and modify the json_module meta-data option.

from cement.ext.ext_json import JsonOutputHandler

class MyJsonHandler(JsonOutputHandler):
class Meta:

json_module = 'ujson'

then, the class must be replaced via a 'post_setup' hook

def override_json(app):
app.handler.register(MyJsonHandler, force=True)

app.hook.register('post_setup', override_json)

class cement.ext.ext_json.JsonConfigHandler(*args, **kw)
Bases: cement.ext.ext_configparser.ConfigParserConfigHandler

This class implements the IConfig interface, and provides the same functionality of ConfigParserConfigHandler
but with JSON configuration files.

class Meta
Handler meta-data.

3.8. API Reference 99

Cement Framework, Release 2.10.12

json_module = 'json'
Backend JSON library module to use (json, ujson).

_parse_file(file_path)
Parse JSON configuration file settings from file_path, overwriting existing config settings. If the file does
not exist, returns False.

Parameters file_path – The file system path to the JSON configuration file.

Returns boolean

_setup(app)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

class cement.ext.ext_json.JsonOutputHandler(*args, **kw)
Bases: cement.core.output.CementOutputHandler

This class implements the IOutput interface. It provides JSON output from a data dictionary using the json
module of the standard library. Please see the developer documentation on Output Handling.

This handler forces Cement to suppress console output until app.render is called (keeping the output pure
JSON). If troubleshooting issues, you will need to pass the --debug option in order to unsuppress output and
see what’s happening.

class Meta
Handler meta-data

interface
alias of cement.core.output.IOutput

json_module = 'json'
Backend JSON library module to use (json, ujson)

label = 'json'
The string identifier of this handler.

overridable = True
Whether or not to include json as an available choice to override the output_handler via
command line options.

_setup(app)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

render(data_dict, template=None, **kw)
Take a data dictionary and render it as Json output. Note that the template option is received here per the
interface, however this handler just ignores it. Additional keyword arguments passed to json.dumps().

Parameters

• data_dict – The data dictionary to render.

• template – This option is completely ignored.

Returns A JSON encoded string.

100 Chapter 3. Documentation

http://docs.python.org/library/json.html

Cement Framework, Release 2.10.12

Return type str

cement.ext.ext_json.suppress_output_after_render(app, out_text)
This is a post_render hook that suppresses console output again after rendering, only if the
JsonOutputHandler is triggered via command line.

Parameters app – The application object.

cement.ext.ext_json.suppress_output_before_run(app)
This is a post_argument_parsing hook that suppresses console output if the JsonOutputHandler is
triggered via command line.

Parameters app – The application object.

cement.ext.ext_json.unsuppress_output_before_render(app, data)
This is a pre_render that unsuppresses console output if the JsonOutputHandler is triggered via com-
mand line so that the JSON is the only thing in the output.

Parameters app – The application object.

cement.ext.ext_json_configobj

The JSON ConfigObj Extension is a combination of the JsonConfigHandler and
ConfigObjConfigHandler which allows the application to read JSON configuration files into a ConfigObj
based configuration handler.

Requirements

• ConfigObj (pip install configobj)

Configuration

This extension does not support any configuration settings.

Usage

myapp.conf

{
"myapp": {

"foo": "bar"
}

}

myapp.py

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['json_configobj']
config_handler = 'json_configobj'

(continues on next page)

3.8. API Reference 101

Cement Framework, Release 2.10.12

(continued from previous page)

with MyApp() as app:
app.run()

get config settings
app.config['myapp']['foo']

set config settings
app.config['myapp']['foo'] = 'bar2'

etc...

class cement.ext.ext_json_configobj.JsonConfigObjConfigHandler(*args, **kw)
Bases: cement.ext.ext_configobj.ConfigObjConfigHandler

This class implements the IConfig interface, and provides the same functionality of ConfigObjConfigHandler
but with JSON configuration files.

Note This extension has an external dependency on ConfigObj. You must include configobj in your
application’s dependencies as Cement explicitly does not include external dependencies for optional extensions.

class Meta
Handler meta-data.

json_module = 'json'
Backend JSON module to use (json, ujson, etc)

label = 'json_configobj'
The string identifier of this handler.

_parse_file(file_path)
Parse JSON configuration file settings from file_path, overwriting existing config settings. If the file
does not exist, returns False.

Parameters file_path – The file system path to the JSON configuration file.

Returns boolean

_setup(app)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

cement.ext.ext_logging

The Logging Extension provides log handling based on the standard logging.Logger, and is the default log
handler used by Cement.

Requirements

• No external dependencies.

102 Chapter 3. Documentation

https://docs.python.org/3.4/library/logging.html#logging.Logger

Cement Framework, Release 2.10.12

Configuration

This extension honors the following configuration settings from the config section log.logging:

• level

• file

• to_console

• rotate

• max_bytes

• max_files

A sample config section (in any config file) might look like:

[log.logging]
file = /path/to/config/file
level = info
to_console = true
rotate = true
max_bytes = 512000
max_files = 4

Usage

from cement.core.foundation import CementApp

with MyApp() as app:
app.log.info("This is an info message")
app.log.warning("This is an warning message")
app.log.error("This is an error message")
app.log.fatal("This is a fatal message")
app.log.debug("This is a debug message")

class cement.ext.ext_logging.LoggingLogHandler(*args, **kw)
Bases: cement.core.log.CementLogHandler

This class is an implementation of the ILog interface, and sets up the logging facility using the standard Python
logging module.

class Meta
Handler meta-data.

clear_loggers = []
List of logger namespaces to clear. Useful when imported software also sets up logging and you end
up with duplicate log entries.

Changes in Cement 2.1.3. Previous versions only supported clear_loggers as a boolean, but did fully
support clearing non-app logging namespaces.

config_defaults = {'file': None, 'level': 'INFO', 'max_bytes': 512000, 'max_files': 4, 'rotate': False, 'to_console': True}
The default configuration dictionary to populate the log section.

console_format = '%(levelname)s: %(message)s'
The logging format for the consoler logger.

3.8. API Reference 103

http://docs.python.org/library/logging.html

Cement Framework, Release 2.10.12

debug_format = '%(asctime)s (%(levelname)s) %(namespace)s : %(message)s'
The logging format for both file and console if debug==True.

file_format = '%(asctime)s (%(levelname)s) %(namespace)s : %(message)s'
The logging format for the file logger.

formatter_class
alias of logging.Formatter

interface
alias of cement.core.log.ILog

label = 'logging'
The string identifier of this handler.

namespace = None
The logging namespace.

Note: Although Meta.namespace defaults to None, Cement will set this to the application label
(CementApp.Meta.label) if not set during setup.

_setup(app_obj)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

_setup_console_log()
Add a console log handler.

_setup_file_log()
Add a file log handler.

clear_loggers(namespace)
Clear any previously configured loggers for namespace.

debug(msg, namespace=None, **kw)
Log to the DEBUG facility.

Parameters

• msg – The message to log.

• namespace – A log prefix, generally the module __name__ that the log is coming
from. Will default to self._meta.namespace if None is passed. For debugging, it can
be useful to set this to __file__, though __name__ is much less verbose.

• kw – Keyword arguments are passed on to the backend logging system.

error(msg, namespace=None, **kw)
Log to the ERROR facility.

Parameters

• msg – The message to log.

• namespace – A log prefix, generally the module __name__ that the log is coming
from. Will default to self._meta.namespace if None is passed.

• kw – Keyword arguments are passed on to the backend logging system.

fatal(msg, namespace=None, **kw)
Log to the FATAL (aka CRITICAL) facility.

104 Chapter 3. Documentation

https://docs.python.org/3.4/library/logging.html#logging.Formatter

Cement Framework, Release 2.10.12

Parameters

• msg – The message to log.

• namespace – A log prefix, generally the module __name__ that the log is coming
from. Will default to self._meta.namespace if None is passed.

• kw – Keyword arguments are passed on to the backend logging system.

get_level()
Returns the current log level.

info(msg, namespace=None, **kw)
Log to the INFO facility.

Parameters

• msg – The message to log.

• namespace – A log prefix, generally the module __name__ that the log is coming
from. Will default to self._meta.namespace if None is passed.

• kw – Keyword arguments are passed on to the backend logging system.

set_level(level)
Set the log level. Must be one of the log levels configured in self.levels which are ['INFO',
'WARNING', 'ERROR', 'DEBUG', 'FATAL'].

Parameters level – The log level to set.

warn(msg, namespace=None, **kw)
DEPRECATION WARNING: This function is deprecated as of Cement 2.9.x in favor of the
LoggingLogHandler.warning() function, and will be removed in future versions of Cement.

See: :ref:LoggingLogHandler.warning():

warning(msg, namespace=None, **kw)
Log to the WARNING facility.

Parameters

• msg – The message to log.

• namespace – A log prefix, generally the module __name__ that the log is coming
from. Will default to self._meta.namespace if None is passed.

• kw – Keyword arguments are passed on to the backend logging system.

cement.ext.ext_memcached

The Memcached Extension provides application caching and key/value store support via Memcache.

Requirements

• pylibmc (pip install pylibmc)

– Note: There are known issues installing pylibmc on OSX/Homebrew via PIP. This post might be
helpful.

3.8. API Reference 105

http://stackoverflow.com/questions/14803310/error-when-install-pylibmc-using-pip
http://stackoverflow.com/questions/14803310/error-when-install-pylibmc-using-pip

Cement Framework, Release 2.10.12

Configuration

This extension honors the following config settings under a [cache.memcached] section in any configuration file:

• expire_time - The default time in second to expire items in the cache. Default: 0 (does not expire).

• hosts - List of Memcached servers.

Configurations can be passed as defaults to a CementApp:

from cement.core.foundation import CementApp
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'cache.memcached')
defaults['cache.memcached']['expire_time'] = 0
defaults['cache.memcached']['hosts'] = ['127.0.0.1']

class MyApp(CementApp):
class Meta:

label = 'myapp'
config_defaults = defaults
extensions = ['memcached']
cache_handler = 'memcached'

Additionally, an application configuration file might have a section like the following:

[myapp]

set the cache handler to use
cache_handler = memcached

[cache.memcached]

time in seconds that an item in the cache will expire
expire_time = 3600

comma seperated list of memcached servers
hosts = 127.0.0.1, cache.example.com

Usage

from cement.core import foundation
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'memcached')
defaults['cache.memcached']['expire_time'] = 300 # seconds
defaults['cache.memcached']['hosts'] = ['127.0.0.1']

class MyApp(foundation.CementApp):
class Meta:

label = 'myapp'
config_defaults = defaults
extensions = ['memcached']
cache_handler = 'memcached'

(continues on next page)

106 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

with MyApp() as app:
Run the app
app.run()

Set a cached value
app.cache.set('my_key', 'my value')

Get a cached value
app.cache.get('my_key')

Delete a cached value
app.cache.delete('my_key')

Delete the entire cache
app.cache.purge()

class cement.ext.ext_memcached.MemcachedCacheHandler(*args, **kw)
Bases: cement.core.cache.CementCacheHandler

This class implements the ICache interface. It provides a caching interface using the pylibmc library.

Note This extension has an external dependency on pylibmc. You must include pylibmc in your applications
dependencies as Cement explicitly does not include external dependencies for optional extensions.

class Meta
Handler meta-data.

interface
alias of cement.core.cache.ICache

_config(key)
This is a simple wrapper, and is equivalent to: self.app.config.get('cache.memcached',
<key>).

Parameters key – The key to get a config value from the ‘cache.memcached’ config section.

Returns The value of the given key.

_fix_hosts()
Useful to fix up the hosts configuration (i.e. convert a comma-separated string into a list). This function
does not return anything, however it is expected to set the hosts value of the [cache.memcached]
section (which is what this extension reads for it’s host configution).

Returns None

_setup(*args, **kw)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

delete(key, **kw)
Delete an item from the cache for the given key. Any additional keyword arguments will be passed
directly to the pylibmc delete function.

Parameters key – The key to delete from the cache.

Returns None

3.8. API Reference 107

http://sendapatch.se/projects/pylibmc/

Cement Framework, Release 2.10.12

get(key, fallback=None, **kw)
Get a value from the cache. Any additional keyword arguments will be passed directly to pylibmc get
function.

Parameters

• key – The key of the item in the cache to get.

• fallback – The value to return if the item is not found in the cache.

Returns The value of the item in the cache, or the fallback value.

purge(**kw)
Purge the entire cache, all keys and values will be lost. Any additional keyword arguments will be passed
directly to the pylibmc flush_all() function.

Returns None

set(key, value, time=None, **kw)
Set a value in the cache for the given key. Any additional keyword arguments will be passed directly to
the pylibmc set function.

Parameters

• key – The key of the item in the cache to set.

• value – The value of the item to set.

• time – The expiration time (in seconds) to keep the item cached. Defaults to ex-
pire_time as defined in the applications configuration.

Returns None

cement.ext.ext_mustache

The Mustache Extension provides output templating based on the Mustache Templating Language.

Requirements

• pystache (pip install pystache)

Configuration

To prepend a directory to the template_dirs list defined by the application/developer, an end-user can add the
configuration option template_dir to their application configuration file under the main config section:

[myapp]
template_dir = /path/to/my/templates

Usage

from cement.core import foundation

class MyApp(foundation.CementApp):
class Meta:

(continues on next page)

108 Chapter 3. Documentation

http://mustache.github.com

Cement Framework, Release 2.10.12

(continued from previous page)

label = 'myapp'
extensions = ['mustache']
output_handler = 'mustache'
template_module = 'myapp.templates'
template_dirs = [

'~/.myapp/templates',
'/usr/lib/myapp/templates',
]

...

Note that the above template_module and template_dirs are the auto-defined defaults but are added here
for clarity. From here, you would then put a Mustache template file in myapp/templates/my_template.
mustache or /usr/lib/myapp/templates/my_template.mustache and then render a data dictionary
with it:

app.render(some_data_dict, 'my_template.mustache')

Loading Partials

Mustache supports partials, or in other words template includes. These are also loaded by the output handler,
but require a full file name. The partials will be loaded in the same way as the base templates

For example:

templates/base.mustache

Inside base.mustache
{{> partial.mustache}}

template/partial.mustache

Inside partial.mustache

Would output:

Inside base.mustache
Inside partial.mustache

class cement.ext.ext_mustache.MustacheOutputHandler(*args, **kw)
Bases: cement.core.output.TemplateOutputHandler

This class implements the IOutput interface. It provides text output from template and uses the Mustache
Templating Language. Please see the developer documentation on Output Handling.

Note This extension has an external dependency on pystache. You must include pystache in your ap-
plications dependencies as Cement explicitly does not include external dependencies for optional extensions.

class Meta
Handler meta-data.

interface
alias of cement.core.output.IOutput

overridable = False
Whether or not to include mustache as an available to choice to override the output_handler
via command line options.

3.8. API Reference 109

http://mustache.github.com
http://mustache.github.com

Cement Framework, Release 2.10.12

render(data_dict, template=None, **kw)
Take a data dictionary and render it using the given template file. Additional keyword arguments passed
to stache.render().

Required Arguments:

Parameters

• data_dict – The data dictionary to render.

• template – The path to the template, after the template_module or
template_dirs prefix as defined in the application.

Returns str (the rendered template text)

cement.ext.ext_plugin

The Plugin Extension handles application plugin support, and is the default plugin handler used by Cement.

Requirements

• No external dependencies

Configuration

This extension does not directly honor any configuration settings.

Usage

For usage information see Application Plugins.

class cement.ext.ext_plugin.CementPluginHandler
Bases: cement.core.plugin.CementPluginHandler

This class is an internal implementation of the IPlugin interface. It does not take any parameters on initialization.

class Meta
Handler meta-data.

interface
The interface that this class implements.

alias of cement.core.plugin.IPlugin

label = 'cement'
The string identifier for this class.

_load_plugin_from_bootstrap(plugin_name, base_package)
Load a plugin from a python package. Returns True if no ImportError is encountered.

Parameters

• plugin_name (str) – The name of the plugin, also the name of the module to load
from base_package. I.e. myapp.bootstrap.myplugin

• base_package (str) – The base python package to load the plugin module from.
I.e.’myapp.bootstrap’ or similar.

110 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Returns True is the plugin was loaded, False otherwise

Raises ImportError

_load_plugin_from_dir(plugin_name, plugin_dir)
Load a plugin from a directory path rather than a python package within sys.path. This would either be
myplugin.py or myplugin/__init__.py within the given plugin_dir.

Parameters

• plugin_name – The name of the plugin.

• plugin_dir – The filesystem directory path where the plugin exists.

_setup(app_obj)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

get_disabled_plugins()
List of disabled plugins

get_enabled_plugins()
List of plugins that are enabled (not necessary loaded yet).

get_loaded_plugins()
List of plugins that have been loaded.

load_plugin(plugin_name)
Load a plugin whose name is plugin_name. First attempt to load from a plugin directory (plugin_dir),
secondly attempt to load from a bootstrap module (plugin_bootstrap) determined by CementApp.
Meta.plugin_bootstrap.

Upon successful loading of a plugin, the plugin name is appended to the self._loaded_plugins
list.

Parameters plugin_name (str) – The name of the plugin to load.

Raises cement.core.exc.FrameworkError

load_plugins(plugin_list)
Load a list of plugins. Each plugin name is passed to self.load_plugin().

Parameters plugin_list – A list of plugin names to load.

cement.ext.ext_redis

The Redis Extension provides application caching and key/value store support via Redis.

Requirements

• redis (pip install redis)

Configuration

This extension honors the following config settings under a [cache.redis] section in any configuration file:

3.8. API Reference 111

https://docs.python.org/3.4/library/exceptions.html#ImportError

Cement Framework, Release 2.10.12

• expire_time - The default time in second to expire items in the cache. Default: 0 (does not expire).

• host - Redis server.

• port - Redis port.

• db - Redis database number.

Configurations can be passed as defaults to a CementApp:

from cement.core.foundation import CementApp
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'cache.redis')
defaults['cache.redis']['expire_time'] = 0
defaults['cache.redis']['host'] = '127.0.0.1'
defaults['cache.redis']['port'] = 6379
defaults['cache.redis']['db'] = 0

class MyApp(CementApp):
class Meta:

label = 'myapp'
config_defaults = defaults
extensions = ['redis']
cache_handler = 'redis'

Additionally, an application configuration file might have a section like the following:

[myapp]

set the cache handler to use
cache_handler = redis

[cache.redis]

time in seconds that an item in the cache will expire
expire_time = 300

Redis server
host = 127.0.0.1

Redis port
port = 6379

Redis database number
db = 0

Usage

from cement.core import foundation
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'redis')
defaults['cache.redis']['expire_time'] = 300 # seconds
defaults['cache.redis']['host'] = '127.0.0.1'
defaults['cache.redis']['port'] = 6379

(continues on next page)

112 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

defaults['cache.redis']['db'] = 0

class MyApp(foundation.CementApp):
class Meta:

label = 'myapp'
config_defaults = defaults
extensions = ['redis']
cache_handler = 'redis'

with MyApp() as app:
Run the app
app.run()

Set a cached value
app.cache.set('my_key', 'my value')

Get a cached value
app.cache.get('my_key')

Delete a cached value
app.cache.delete('my_key')

Delete the entire cache
app.cache.purge()

class cement.ext.ext_redis.RedisCacheHandler(*args, **kw)
Bases: cement.core.cache.CementCacheHandler

This class implements the ICache interface. It provides a caching interface using the redis library.

Note This extension has an external dependency on redis. You must include redis in your applications
dependencies as Cement explicitly does not include external dependencies for optional extensions.

class Meta
Handler meta-data.

interface
alias of cement.core.cache.ICache

_config(key, default=None)
This is a simple wrapper, and is equivalent to: self.app.config.get('cache.redis',
<key>).

Parameters key – The key to get a config value from the ‘cache.redis’ config section.

Returns The value of the given key.

_setup(*args, **kw)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

delete(key, **kw)
Delete an item from the cache for the given key. Additional keyword arguments are ignored.

Parameters key – The key to delete from the cache.

Returns None

3.8. API Reference 113

http://github.com/andymccurdy/redis-py

Cement Framework, Release 2.10.12

get(key, fallback=None, **kw)
Get a value from the cache. Additional keyword arguments are ignored.

Parameters

• key – The key of the item in the cache to get.

• fallback – The value to return if the item is not found in the cache.

Returns The value of the item in the cache, or the fallback value.

purge(**kw)
Purge the entire cache, all keys and values will be lost. Any additional keyword arguments will be passed
directly to the redis flush_all() function.

Returns None

set(key, value, time=None, **kw)
Set a value in the cache for the given key. Additional keyword arguments are ignored.

Parameters

• key – The key of the item in the cache to set.

• value – The value of the item to set.

• time – The expiration time (in seconds) to keep the item cached. Defaults to ex-
pire_time as defined in the applications configuration.

Returns None

cement.ext.ext_reload_config

WARNING: THIS EXTENSION IS EXPERIMENTAL

Experimental extension may (and probably will) change at any time. Please do not rely on these features until they are
more fully vetted.

The Reload Config Framework Extension enables applications Built on Cement (tm) to easily reload configuration
settings any time configuration files are modified without stopping/restarting the process.

Requirements

• Python 2.6+, Python 3+

• Python Modules: pyinotify

• Linux (Kernel 2.6.13+)

Features

• Application configuration files (CementApp.Meta.config_files) are reloaded if modified.

• Application plugin configuration files (Anything found in (CementApp.Meta.plugin_config_dirs)
are reloaded if modified.

• The framework calls CementApp.config.parse_file() on any watched files once the kernel has sig-
naled a modification.

• New configurations settings are accessible via CementApp.config nearly immediately once the kernel (in-
otify) picks up the change.

114 Chapter 3. Documentation

Cement Framework, Release 2.10.12

• Provides a pre_reload_config and post_reload_config hook so that applications can tie into the
event and perform operations any time a configuration file is modified.

• Asynchronously monitors configuration files for changes via inotify. Long running processes are not blocked
by the operations performed when files are detected to be modified.

Limitations

• Currently this extension only re-parses configuration files into the config handler. Some applications may need
further work in-order to truly honor those changes. For example, if a configuration settings toggles something
on or off, or triggers something else to happen (like making an API connection, etc). . . this extension does not
currently handle that, and it is left up to the application developer to tie into the events via the provided hooks.

• Only available on Linux based systems.

Configuration

This extension does not currently honor any configuration settings.

Hooks

This extension defines the following hooks:

pre_reload_config

Run right before any framework actions are performed once modifications to any of the watched files are detected.
Expects a single argument, which is the app object, and does not expect anything in return.

def my_pre_reload_config_hook(app):
do something with app?
pass

post_reload_config

Run right after any framework actions are performed once modifications to any of the watched files are detected.
Expects a single argument, which is the app object, and does not expect anything in return.

def my_post_reload_config_hook(app):
do something with app?
pass

Usage

The following example shows how to add the reload_config extension, as well as perform an arbitrary action any time
configuration changes are detected.

3.8. API Reference 115

Cement Framework, Release 2.10.12

from time import sleep
from cement.core.exc import CaughtSignal
from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

def print_foo(app):
print "Foo => %s" % app.config.get('myapp', 'foo')

class Base(CementBaseController):
class Meta:

label = 'base'

@expose(hide=True)
def default(self):

print('Inside Base.default()')

simulate a long running process
while True:

sleep(30)

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = Base
extensions = ['reload_config']

with MyApp() as app:
run this anytime the configuration has changed
app.hook.register('post_reload_config', print_foo)

try:
app.run()

except CaughtSignal as e:
maybe do something... but catch it regardless so app.close() is
called when exiting `with` cleanly.
print(e)

The following would output something like the following when ~/.myapp.conf or any other configuration file is
modified (spaces added for clarity):

Inside Base.default()

2015-05-05 03:00:32,023 (DEBUG) cement.ext.ext_reload_config : config
path modified: mask=IN_CLOSE_WRITE,
path=/home/vagrant/.myapp.conf

2015-05-05 03:00:32,023 (DEBUG) cement.core.config : config file
'/home/vagrant/.myapp.conf' exists,
loading settings...

2015-05-05 03:00:32,023 (DEBUG) cement.core.hook : running hook
'post_reload_config' (<function print_foo
at 0x7f1b52a5ab70>) from __main__

Foo => bar

2015-05-05 03:00:32,023 (DEBUG) cement.ext.ext_reload_config : config

(continues on next page)

116 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

path modified: mask=IN_CLOSE_WRITE,
path=/home/vagrant/.myapp.conf

2015-05-05 03:00:32,023 (DEBUG) cement.core.config : config file
'/home/vagrant/.myapp.conf' exists,
loading settings...

2015-05-05 03:00:32,023 (DEBUG) cement.core.hook : running hook
'post_reload_config' (<function print_foo
at 0x7f1b52a5ab70>) from __main__

Foo => bar2

2015-05-05 03:00:32,023 (DEBUG) cement.ext.ext_reload_config : config
path modified: mask=IN_CLOSE_WRITE,
path=/home/vagrant/.myapp.conf

2015-05-05 03:00:32,023 (DEBUG) cement.core.config : config file
'/home/vagrant/.myapp.conf' exists,
loading settings...

2015-05-05 03:00:32,023 (DEBUG) cement.core.hook : running hook
'post_reload_config' (<function print_foo
at 0x7f1b52a5ab70>) from __main__

Foo => bar3

cement.ext.ext_smtp

The SMTP Extension provides the ability for applications to send email based on the smtplib standard library.

Requirements

• No external depencies

Configuration

This extension honors the following configuration settings:

• to - Default to addresses (list, or comma separated depending on the ConfigHandler in use)

• from_addr - Default from_addr address

• cc - Default cc addresses (list, or comma separated depending on the ConfigHandler in use)

• bcc - Default bcc addresses (list, or comma separated depending on the ConfigHandler in use)

• subject - Default subject

• subject_prefix - Additional string to prepend to the subject

• host - The SMTP host server

• port - The SMTP host server port

• timeout - The timeout in seconds before terminating a connection

• ssl - Whether to initiate SSL or not

• tls - Whether to use TLS or not (requires SSL)

• auth - Whether or not to initiate SMTP authentication

3.8. API Reference 117

http://docs.python.org/dev/library/smtplib.html

Cement Framework, Release 2.10.12

• username - SMTP authentication username

• password - SMTP authentication password

You can add these to any application configuration file under a [mail.smtp] section, for example:

~/.myapp.conf

[myapp]

set the mail handler to use
mail_handler = smtp

[mail.smtp]

default to addresses (comma separated list)
to = me@example.com

default from address
from = someone_else@example.com

default cc addresses (comma separated list)
cc = jane@example.com, rita@example.com

default bcc addresses (comma separated list)
bcc = blackhole@example.com, someone_else@example.com

default subject
subject = This is The Default Subject

additional prefix to prepend to the subject
subject_prefix = MY PREFIX >

smtp host server
host = localhost

smtp host port
port = 465

timeout in seconds
timeout = 30

whether or not to establish an ssl connection
ssl = 1

whether or not to use start tls
tls = 1

whether or not to initiate smtp auth
auth = 1

smtp auth username
username = john.doe

smtp auth password
password = oober_secure_password

118 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Usage

class MyApp(CementApp):
class Meta:

label = 'myapp'
mail_handler = 'smtp'

with MyApp() as app:
app.mail.send('This is my fake message',

subject='This is my subject',
to=['john@example.com', 'rita@example.com'],
from_addr='me@example.com',
)

class cement.ext.ext_smtp.SMTPMailHandler(*args, **kw)
Bases: cement.core.mail.CementMailHandler

This class implements the IMail interface, and is based on the smtplib standard library.

class Meta
Handler meta-data.

config_defaults = {'auth': False, 'bcc': [], 'cc': [], 'from_addr': 'noreply@localhost', 'host': 'localhost', 'password': None, 'port': '25', 'ssl': False, 'subject': None, 'subject_prefix': None, 'timeout': 30, 'tls': False, 'to': [], 'username': None}
Configuration default values

label = 'smtp'
Unique identifier for this handler

send(body, **kw)
Send an email message via SMTP. Keyword arguments override configuration defaults (cc, bcc, etc).

Parameters

• body (multiline string) – The message body to send

• to (list) – List of recipients (generally email addresses)

• from_addr (str) – Address (generally email) of the sender

• cc (list) – List of CC Recipients

• bcc (list) – List of BCC Recipients

• subject (str) – Message subject line

Returns Boolean (True if message is sent successfully, False otherwise)

Usage

Using all configuration defaults
app.mail.send('This is my message body')

Overriding configuration defaults
app.mail.send('My message body'

from_addr='me@example.com',
to=['john@example.com'],
cc=['jane@example.com', 'rita@example.com'],
subject='This is my subject',
)

3.8. API Reference 119

http://docs.python.org/dev/library/smtplib.html

Cement Framework, Release 2.10.12

cement.ext.ext_tabulate

The Tabulate Extension provides output handling based on the Tabulate library. It’s format is familiar to users of
MySQL, Postgres, etc.

Requirements

• Tabulate (pip install tabulate)

Configuration

This extension does not support any configuration settings.

Usage

from cement.core import foundation

class MyApp(foundation.CementApp):
class Meta:

label = 'myapp'
extensions = ['tabulate']
output_handler = 'tabulate'

with MyApp() as app:
app.run()

create a dataset
headers = ['NAME', 'AGE', 'ADDRESS']
data = [

["Krystin Bartoletti", 47, "PSC 7591, Box 425, APO AP 68379"],
["Cris Hegan", 54, "322 Reubin Islands, Leylabury, NC 34388"],
["George Champlin", 25, "Unit 6559, Box 124, DPO AA 25518"],
]

app.render(data, headers=headers)

Looks like:

| NAME | AGE | ADDRESS |
|--------------------+-----+---|
Krystin Bartoletti	47	PSC 7591, Box 425, APO AP 68379
Cris Hegan	54	322 Reubin Islands, Leylabury, NC 34388
George Champlin	25	Unit 6559, Box 124, DPO AA 25518

class cement.ext.ext_tabulate.TabulateOutputHandler(*args, **kw)
Bases: cement.core.output.CementOutputHandler

This class implements the IOutput interface. It provides tabularized text output using the Tabulate module.
Please see the developer documentation on Output Handling.

Note This extension has an external dependency on tabulate. You must include tabulate in your ap-
plications dependencies as Cement explicitly does not include external dependencies for optional extensions.

120 Chapter 3. Documentation

https://pypi.python.org/pypi/tabulate
https://pypi.python.org/pypi/tabulate

Cement Framework, Release 2.10.12

class Meta
Handler meta-data.

float_format = 'g'
String format to use for float values.

format = 'orgtbl'
Default template format. See the tabulate documentation for all supported template formats.

headers = []
Default headers to use.

interface
alias of cement.core.output.IOutput

missing_value = ''
Default replacement for missing value.

numeric_alignment = 'decimal'
Default alignment for numeric columns. See the tabulate documentation for all supported
numalign options.

overridable = False
Whether or not to include tabulate as an available to choice to override the output_handler
via command line options.

padding = True
Whether or not to pad the output with an extra pre/post ‘n’

string_alignment = 'left'
Default alignment for string columns. See the tabulate documentation for all supported
stralign options.

render(data, **kw)
Take a data dictionary and render it into a table. Additional keyword arguments are passed directly to
tabulate.tabulate.

Required Arguments:

Parameters data_dict – The data dictionary to render.

Returns str (the rendered template text)

cement.ext.ext_yaml

The Yaml Extension adds the YamlOutputHandler to render output in pure Yaml, as well as the
YamlConfigHandler that allows applications to use Yaml configuration files as a drop-in replacement of the
default cement.ext.ext_configparser.ConfigParserConfigHandler.

Requirements

• pyYaml (pip install pyYaml)

Configuration

This extension does not honor any application configuration settings.

3.8. API Reference 121

Cement Framework, Release 2.10.12

Usage

myapp.conf

myapp:

foo: bar

myapp.py

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['yaml']
config_handler = 'yaml'

you probably don't want to do this.. but you can
output_handler = 'yaml'

with MyApp() as app:
app.run()

create some data
data = dict(foo=app.config.get('myapp', 'foo'))

app.render(data)

In general, you likely would not set output_handler to yaml, but rather another type of output handler that
displays readable output to the end-user (i.e. Mustache, Genshi, or Tabulate). By default Cement adds the -o command
line option to allow the end user to override the output handler. For example: passing -o yaml will override the
default output handler and set it to YamlOutputHandler.

See CementApp.Meta.handler_override_options.

$ python myapp.py -o yaml
{foo: bar}

class cement.ext.ext_yaml.YamlConfigHandler(*args, **kw)
Bases: cement.ext.ext_configparser.ConfigParserConfigHandler

This class implements the IConfig interface, and provides the same functionality of ConfigParserConfigHandler
but with Yaml configuration files. See pyYaml for more information on pyYaml.

Note This extension has an external dependency on pyYaml. You must include pyYaml in your application’s
dependencies as Cement explicitly does not include external dependencies for optional extensions.

_parse_file(file_path)
Parse Yaml configuration file settings from file_path, overwriting existing config settings. If the file does
not exist, returns False.

Parameters file_path – The file system path to the Yaml configuration file.

Returns boolean

class cement.ext.ext_yaml.YamlOutputHandler(*args, **kw)
Bases: cement.core.output.CementOutputHandler

122 Chapter 3. Documentation

http://pyYaml.org/wiki/PyYamlDocumentation

Cement Framework, Release 2.10.12

This class implements the IOutput interface. It provides Yaml output from a data dictionary and uses pyYaml to
dump it to STDOUT. Please see the developer documentation on Output Handling.

This handler forces Cement to suppress console output until app.render is called (keeping the output pure
Yaml). If troubleshooting issues, you will need to pass the --debug option in order to unsuppress output and
see what’s happening.

class Meta
Handler meta-data.

interface
alias of cement.core.output.IOutput

overridable = True
Whether or not to include yaml as an available to choice to override the output_handler via
command line options.

_setup(app_obj)
The _setup function is called during application initialization and must setup the handler object making
it ready for the framework or the application to make further calls to it.

Parameters app_obj – The application object.

Returns None

render(data_dict, template=None, **kw)
Take a data dictionary and render it as Yaml output. Note that the template option is received here per the
interface, however this handler just ignores it. Additional keyword arguments passed to yaml.dump().

Parameters

• data_dict – The data dictionary to render.

• template – Ignored in this output handler implementation.

Returns A Yaml encoded string.

Return type str

cement.ext.ext_yaml.suppress_output_after_render(app, out_text)
This is a post_render hook that suppresses console output again after rendering, only if the
YamlOutputHandler is triggered via command line.

Parameters app – The application object.

cement.ext.ext_yaml.suppress_output_before_run(app)
This is a post_argument_parsing hook that suppresses console output if the YamlOutputHandler is
triggered via command line.

Parameters app – The application object.

cement.ext.ext_yaml.unsuppress_output_before_render(app, data)
This is a pre_render that unsuppresses console output if the YamlOutputHandler is triggered via com-
mand line so that the Yaml is the only thing in the output.

Parameters app – The application object.

cement.ext.ext_yaml_configobj

The Yaml ConfigObj Extension is a combination of the YamlConfigHandler and
ConfigObjConfigHandler which allows the application to read Yaml configuration files into a ConfigObj based
configuration handler.

3.8. API Reference 123

http://pyYaml.org/wiki/PyYamlDocumentation

Cement Framework, Release 2.10.12

Requirements

• ConfigObj (pip install configobj)

• pyYaml (pip install pyYaml)

Configuration

This extension does not honor any application configuration settings.

Usage

myapp.conf

myapp:

foo: bar

myapp.py

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['yaml_configobj']
config_handler = 'yaml_configobj'

with MyApp() as app:
app.run()

get config settings
app.config['myapp']['foo']

set config settings
app.config['myapp']['foo'] = 'bar2'

etc...

class cement.ext.ext_yaml_configobj.YamlConfigObjConfigHandler(*args, **kw)
Bases: cement.ext.ext_configobj.ConfigObjConfigHandler

This class implements the IConfig interface, and provides the same functionality of ConfigObjConfigHandler
but with YAML configuration files. See pyYAML for more information on pyYAML

Note This extension has an external dependency on pyYAML and ConfigObj. You must include pyYAML and
configobj in your application’s dependencies as Cement explicitly does not include external dependencies for
optional extensions.

class Meta
Handler meta-data.

_parse_file(file_path)
Parse YAML configuration file settings from file_path, overwriting existing config settings. If the file does
not exist, returns False.

Parameters file_path – The file system path to the YAML configuration file.

124 Chapter 3. Documentation

http://pyyaml.org/wiki/PyYAMLDocumentation

Cement Framework, Release 2.10.12

Returns boolean

cement.ext.ext_watchdog

The Watchdog Framework Extension enables applications Built on Cement (tm) to easily monitor, and react to,
changes in filesystem paths based on the filesystem events monitoring library Watchdog.

On application startup, the Watchdog Observer is automatically started and then upon application close, the observer
thread is properly stopped and joined with the parent process before exit.

This is a simplified wrapper around the functionality of the Watchdog library. For full usage, please see the Watchdog
API Documentation.

Requirements

• Watchdog (pip install watchdog)

Features

• Cross platform support for Linux, OSX, Windows, etc.

Configuration

This extension honors the following application meta-data settings:

• watchdog_paths - A List of tuples that are passed directly as arguments to WatchdogManager.add()
(shortcut equivalent of app.watchdog.add(...).

Hooks

This extension defines the following hooks:

watchdog_pre_start

Run first when CementApp.watchdog.start() is called. The application object is passed as an argument.
Nothing is expected in return.

watchdog_post_start

Run last when CementApp.watchdog.start() is called. The application object is passed as an argument.
Nothing is expected in return.

watchdog_pre_stop

Run first when CementApp.watchdog.stop() is called. The application object is passed as an argument. Noth-
ing is expected in return.

3.8. API Reference 125

https://pypi.python.org/pypi/watchdog
http://pythonhosted.org/watchdog/index.html
http://pythonhosted.org/watchdog/index.html

Cement Framework, Release 2.10.12

watchdog_post_stop

Run last when CementApp.watchdog.stop() is called. The application object is passed as an argument. Noth-
ing is expected in return.

watchdog_pre_join

Run first when CementApp.watchdog.join() is called. The application object is passed as an argument. Noth-
ing is expected in return.

watchdog_post_join

Run last when CementApp.watchdog.join() is called. The application object is passed as an argument. Noth-
ing is expected in return.

Usage

The following example uses the default WatchdogEventHandler that simply logs all events to debug:

from time import sleep
from cement.core.foundation import CementApp
from cement.core.exc import CaughtSignal
from cement.ext.ext_watchdog import WatchdogEventHandler

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['watchdog']
watchdog_paths = [

('./tmp/', WatchdogEventHandler),
]

with MyApp() as app:
app.run()

try:
while True:

sleep(1)
except CaughtSignal as e:

print(e)

In the above example, nothing is printed to console however you will see something like the following via debug
logging:

$ python myapp.py --debug 2>&1 | grep -i watchdog
cement.core.extension : loading the 'cement.ext.ext_watchdog' framework extension
cement.core.hook : defining hook 'watchdog_pre_start'
cement.core.hook : defining hook 'watchdog_post_start'
cement.core.hook : defining hook 'watchdog_pre_stop'
cement.core.hook : defining hook 'watchdog_post_stop'
cement.core.hook : defining hook 'watchdog_pre_join'

(continues on next page)

126 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

cement.core.hook : defining hook 'watchdog_post_join'
cement.core.hook : registering hook 'watchdog_extend_app' from cement.ext.ext_
→˓watchdog into hooks['post_setup']
cement.core.hook : registering hook 'watchdog_add_paths' from cement.ext.ext_watchdog
→˓into hooks['post_setup']
cement.core.hook : registering hook 'watchdog_start' from cement.ext.ext_watchdog
→˓into hooks['pre_run']
cement.core.hook : registering hook 'watchdog_cleanup' from cement.ext.ext_watchdog
→˓into hooks['pre_close']
cement.core.hook : running hook 'post_setup' (<function watchdog_extend_app at
→˓0x103c991e0>) from cement.ext.ext_watchdog
cement.core.foundation : extending appication with '.watchdog' (<cement.ext.ext_
→˓watchdog.WatchdogManager object at 0x103f83ef0>)
cement.core.hook : running hook 'post_setup' (<function watchdog_add_paths at
→˓0x103ddd6a8>) from cement.ext.ext_watchdog
cement.ext.ext_watchdog : adding path /path/to/tmp with event handler <class 'cement.
→˓ext.ext_watchdog.WatchdogEventHandler'>
cement.core.hook : running hook 'pre_run' (<function watchdog_start at 0x103ddd598>)
→˓from cement.ext.ext_watchdog
cement.ext.ext_watchdog : starting watchdog observer
myapp : Watchdog Event: <FileDeletedEvent: src_path='/path/to/tmp/test2'>
myapp : Watchdog Event: <FileDeletedEvent: src_path='/path/to/tmp/test4'>
myapp : Watchdog Event: <FileDeletedEvent: src_path='/path/to/tmp/test3'>
myapp : Watchdog Event: <FileDeletedEvent: src_path='/path/to/tmp/dir1/test'>
myapp : Watchdog Event: <FileDeletedEvent: src_path='/path/to/tmp/test'>
myapp : Watchdog Event: <DirDeletedEvent: src_path='/path/to/tmp/dir1'>
myapp : Watchdog Event: <DirModifiedEvent: src_path='/path/to/tmp'>
myapp : Watchdog Event: <DirModifiedEvent: src_path='/path/to/tmp'>
myapp : Watchdog Event: <DirCreatedEvent: src_path='/path/to/tmp/dir1'>
myapp : Watchdog Event: <FileCreatedEvent: src_path='/path/to/tmp/dir1/test.file'>
myapp : Watchdog Event: <DirModifiedEvent: src_path='/path/to/tmp/dir1'>
cement.core.hook : running hook 'pre_close' (<function watchdog_cleanup at
→˓0x10e930620>) from cement.ext.ext_watchdog
cement.ext.ext_watchdog : stopping watchdog observer
cement.ext.ext_watchdog : joining watchdog observer
cement.core.foundation : closing the myapp application

To expand on the above example, we can add our own event handlers:

class MyEventHandler(WatchdogEventHandler):
def on_any_event(self, event):

do something with the ``event`` object
print("The modified path was: %s" % event.src_path)

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['watchdog']
watchdog_paths = [

('./tmp/', MyEventHandler),
]

$ python myapp.py
The modified path was: /path/to/tmp/test.file

Note that the WatchdogEventHandler could be replaced with any other event handler classes (i.e. those available

3.8. API Reference 127

Cement Framework, Release 2.10.12

from watchdog directly), however to play nicely with Cement, we sub-class them first in order to pass in our
application object:

from watchdog.events import FileSystemEventHandler

class MyEventHandler(FileSystemEventHandler):
def __init__(self, app, *args, **kw):

super(MyEventHandler, self).__init__(*args, **kw)
self.app = app

For full usage of Watchdog event handlers, refer to the Watchdog API Documentation.

class cement.ext.ext_watchdog.WatchdogEventHandler(app, *args, **kw)
Bases: watchdog.events.FileSystemEventHandler

Default event handler used by Cement, that logs all events to the application’s debug log. Additional *args
and **kwargs are passed to the parent class.

Parameters app – The application object

on_any_event(event)
Catch-all event handler.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

class cement.ext.ext_watchdog.WatchdogManager(app, *args, **kw)
Bases: cement.core.meta.MetaMixin

The manager class that is attached to the application object via CementApp.extend().

Usage:

with MyApp() as app:
app.watchdog.start()
app.watchdog.stop()
app.watchdog.join()

add(path, event_handler=None, recursive=True)
Add a directory path and event handler to the observer.

Parameters

• path – A directory path to monitor (str)

• event_handler – An event handler class used to handle events for path (class)

• recursive – Whether to monitor the path recursively (bool)

Returns Returns True if the path is added, False otherwise. (bool)

join(*args, **kw)
Join the observer with the parent process. All *args and **kwargs are passed down to the backend
observer.

start(*args, **kw)
Start the observer. All *args and **kwargs are passed down to the backend observer.

stop(*args, **kw)
Stop the observer. All *args and **kwargs are passed down to the backend observer.

128 Chapter 3. Documentation

http://pythonhosted.org/watchdog/index.html

Cement Framework, Release 2.10.12

3.9 Developer Documentation

This page contains documentation for developers building their application on Cement. It outlines the features of the
Cement Framework and how to use them in your applications.

3.9.1 Installation

It is recommended to work out of a VirtualENV during development of your application, which is reference throughout
this documentation. VirtualENV is easily installed on most platforms either via PIP or by your OS distributions
packaging system (Yum, Apt, Brew, etc).

Installation

Installing Stable Versions from PyPI:

$ pip install cement

Installing Development Versions from Git:

$ pip install -e git+git://github.com/datafolklabs/cement.git#egg=cement

Running Tests

To run tests, you will need to ensure any dependent services are running (for example Memcached), and then do the
following from the root of the source:

Start services
$ memcached &

Python 2.x
$ pip install -r requirements-dev.txt

Python 3.x
$ pip install -r requirements-dev-py3.txt

$ python setup.py nosetests

Building Documentation

To build this documentation, do the following from the root of the source:

$ python setup.py build_sphinx

3.9.2 Quick Start

The following creates and runs a sample ‘helloworld’ application.

helloworld.py

3.9. Developer Documentation 129

http://pypi.python.org/pypi/virtualenv

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp

with CementApp('helloworld') as app:
app.run()
print('Hello World')

The above is equivalent to (should you need more control over setup and closing an application):

from cement.core.foundation import CementApp

app = CementApp('helloworld')
app.setup()
app.run()
print('Hello World')
app.close()

Running the application looks like:

$ python helloworld.py
Hello World

Oh, I can just here you saying, “Whoa whoa. . . hang on a minute. This is a joke right, all you did was print ‘Hello
World’ to STDOUT. What kind of framework is this?”. Well obviously this is just an introduction to show that the
creation of an application is dead simple. Lets take a look further:

$ python helloworld.py --help
usage: helloworld.py [-h] [--debug] [--quiet]

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output

Oh nice, ok. . . ArgParse is already setup with a few options I see. What else?

$ python helloworld.py --debug
2014-04-15 12:28:24,705 (DEBUG) cement.core.foundation : laying cement for the
→˓'helloworld' application
2014-04-15 12:28:24,705 (DEBUG) cement.core.hook : defining hook 'pre_setup'
2014-04-15 12:28:24,705 (DEBUG) cement.core.hook : defining hook 'post_setup'
2014-04-15 12:28:24,705 (DEBUG) cement.core.hook : defining hook 'pre_run'
2014-04-15 12:28:24,705 (DEBUG) cement.core.hook : defining hook 'post_run'
2014-04-15 12:28:24,706 (DEBUG) cement.core.hook : defining hook 'pre_argument_parsing
→˓'
2014-04-15 12:28:24,706 (DEBUG) cement.core.hook : defining hook 'post_argument_
→˓parsing'
2014-04-15 12:28:24,706 (DEBUG) cement.core.hook : defining hook 'pre_close'
2014-04-15 12:28:24,706 (DEBUG) cement.core.hook : defining hook 'post_close'
2014-04-15 12:28:24,706 (DEBUG) cement.core.hook : defining hook 'signal'
2014-04-15 12:28:24,706 (DEBUG) cement.core.hook : defining hook 'pre_render'
2014-04-15 12:28:24,706 (DEBUG) cement.core.hook : defining hook 'post_render'
2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : defining handler type 'extension
→˓' (IExtension)
2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : defining handler type 'log'
→˓(ILog)
2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : defining handler type 'config'
→˓(IConfig)

(continues on next page)

130 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : defining handler type 'plugin'
→˓(IPlugin)
2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : defining handler type 'output'
→˓(IOutput)
2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : defining handler type 'argument
→˓' (IArgument)
2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : defining handler type
→˓'controller' (IController)
2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : defining handler type 'cache'
→˓(ICache)
2014-04-15 12:28:24,706 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.core.extension.CementExtensionHandler'>' into handlers['extension']['cement
→˓']
2014-04-15 12:28:24,706 (DEBUG) cement.core.foundation : now setting up the
→˓'helloworld' application
2014-04-15 12:28:24,706 (DEBUG) cement.core.foundation : adding signal handler for
→˓signal 15
2014-04-15 12:28:24,712 (DEBUG) cement.core.foundation : adding signal handler for
→˓signal 2
2014-04-15 12:28:24,712 (DEBUG) cement.core.foundation : setting up helloworld.
→˓extension handler
2014-04-15 12:28:24,712 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓dummy' framework extension
2014-04-15 12:28:24,712 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_dummy.DummyOutputHandler'>' into handlers['output']['null']
2014-04-15 12:28:24,712 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓plugin' framework extension
2014-04-15 12:28:24,713 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_plugin.CementPluginHandler'>' into handlers['plugin']['cement']
2014-04-15 12:28:24,713 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓configparser' framework extension
2014-04-15 12:28:24,713 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_configparser.ConfigParserConfigHandler'>' into handlers['config'][
→˓'configparser']
2014-04-15 12:28:24,713 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓logging' framework extension
2014-04-15 12:28:24,713 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_logging.LoggingLogHandler'>' into handlers['log']['logging']
2014-04-15 12:28:24,713 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓argparse' framework extension
2014-04-15 12:28:24,714 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_argparse.ArgParseArgumentHandler'>' into handlers['argument'][
→˓'argparse']
2014-04-15 12:28:24,714 (DEBUG) cement.core.foundation : setting up helloworld.config
→˓handler
2014-04-15 12:28:24,714 (DEBUG) cement.ext.ext_configparser : config file '/etc/
→˓helloworld/helloworld.conf' does not exist, skipping...
2014-04-15 12:28:24,714 (DEBUG) cement.ext.ext_configparser : config file '/Users/
→˓derks/.helloworld/config' does not exist, skipping...
2014-04-15 12:28:24,715 (DEBUG) cement.core.foundation : no cache handler defined,
→˓skipping.
2014-04-15 12:28:24,715 (DEBUG) cement.core.foundation : setting up helloworld.log
→˓handler
2014-04-15 12:28:24,715 (DEBUG) cement.core.handler : merging config defaults from '
→˓<cement.ext.ext_logging.LoggingLogHandler object at 0x1015c4ed0>' into section 'log.
→˓logging'
2014-04-15 12:28:24,715 (DEBUG) helloworld:None : logging initialized for
→˓'helloworld:None' using LoggingLogHandler (continues on next page)

3.9. Developer Documentation 131

Cement Framework, Release 2.10.12

(continued from previous page)

2014-04-15 12:28:24,715 (DEBUG) cement.core.foundation : setting up helloworld.plugin
→˓handler
2014-04-15 12:28:24,715 (DEBUG) cement.ext.ext_plugin : plugin config dir /Users/
→˓derks/Development/boss/tmp/helloworld/config/plugins.d does not exist.
2014-04-15 12:28:24,716 (DEBUG) cement.core.foundation : setting up helloworld.arg
→˓handler
2014-04-15 12:28:24,716 (DEBUG) cement.core.foundation : setting up helloworld.output
→˓handler
2014-04-15 12:28:24,716 (DEBUG) cement.core.foundation : setting up application
→˓controllers
Hello World
2014-04-15 12:28:24,716 (DEBUG) cement.core.foundation : closing the application

Damn son, WTF? Don’t worry, we’ll explain everything in the rest of the doc.

Getting Warmer

The following is a more advanced example that showcases some of the default application features. Notice the creation
of command line arguments, default config creation, and logging.

myapp.py

from cement.core.foundation import CementApp
from cement.core import hook
from cement.utils.misc import init_defaults

define our default configuration options
defaults = init_defaults('myapp')
defaults['myapp']['debug'] = False
defaults['myapp']['some_param'] = 'some value'

define any hook functions here
def my_cleanup_hook(app):

pass

define the application class
class MyApp(CementApp):

class Meta:
label = 'myapp'
config_defaults = defaults
extensions = ['daemon', 'memcached', 'json', 'yaml']
hooks = [

('pre_close', my_cleanup_hook),
]

with MyApp() as app:
add arguments to the parser
app.args.add_argument('-f', '--foo', action='store', metavar='STR',

help='the notorious foo option')

log stuff
app.log.debug("About to run my myapp application!")

run the application
app.run()

(continues on next page)

132 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

continue with additional application logic
if app.pargs.foo:

app.log.info("Received option: foo => %s" % app.pargs.foo)

And execution:

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
-f STR, --foo STR the notorious foo option

$ python myapp.py --foo=bar
INFO: Received option: foo => bar

Diving Right In

This final example demonstrates the use of application controllers that handle command dispatch and rapid develop-
ment.

myapp.py

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class MyBaseController(CementBaseController):
class Meta:

label = 'base'
description = "My Application does amazing things!"
arguments = [

(['-f', '--foo'],
dict(action='store', help='the notorious foo option')),

(['-C'],
dict(action='store_true', help='the big C option')),

]

@expose(hide=True)
def default(self):

self.app.log.info('Inside MyBaseController.default()')
if self.app.pargs.foo:

print("Recieved option: foo => %s" % self.app.pargs.foo)

@expose(help="this command does relatively nothing useful")
def command1(self):

self.app.log.info("Inside MyBaseController.command1()")

@expose(aliases=['cmd2'], help="more of nothing")
def command2(self):

self.app.log.info("Inside MyBaseController.command2()")

class MySecondController(CementBaseController):
(continues on next page)

3.9. Developer Documentation 133

Cement Framework, Release 2.10.12

(continued from previous page)

class Meta:
label = 'second'
stacked_on = 'base'

@expose(help='this is some command', aliases=['some-cmd'])
def second_cmd1(self):

self.app.log.info("Inside MySecondController.second_cmd1")

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = 'base'
handlers = [MyBaseController, MySecondController]

with MyApp() as app:
app.run()

As you can see, we’re able to build out the core functionality of our app such as arguments and sub-commands via
controller classes.

Lets see what this looks like:

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

My Application does amazing things!

commands:

command1
this command does relatively nothing useful

command2 (aliases: cmd2)
more of nothing

second-cmd1 (aliases: some-cmd)
this is some command

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
-f FOO, --foo FOO the notorious foo option
-C the big C option

$ python myapp.py
INFO: Inside MyBaseController.default()

$ python myapp.py command1
INFO: Inside MyBaseController.command1()

$ python myapp.py command2
INFO: Inside MyBaseController.command2()

(continues on next page)

134 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

$ python myapp.py second-cmd1
INFO: Inside MySecondController.second_cmd1()

3.9.3 Interfaces and Handlers

Cement has a unique interface and handler system that is used to break up pieces of the framework and allow cus-
tomization of how Cement handles everything from logging to config file parsing, and almost every action in between.

The Cement Interface code is loosely modeled after Zope Interface which allows a developer to define an interface
that other developers can then create implementations for. For example, an interface might define that a class have
a function called _setup(). Any implementation of that interface must provide a function called _setup(), and
perform the expected actions when called.

In Cement, we call the implementation of interfaces handlers and provide the ability to easily register, and retrieve
them via the app.

API References:

• Cement Interface Module

• Cement Handler Module

Defining an Interface

Cement uses interfaces and handlers extensively to manage the framework, however developers can also make use of
this system to provide a clean, and standardized way of allowing other developers to customize their application.

The following defines a basic interface:

from cement.core.foundation import CementApp
from cement.core.interface import Interface, Attribute

class MyInterface(Interface):
class IMeta:

label = 'myinterface'

Must be provided by the implementation
Meta = Attribute('Handler Meta-data')
my_var = Attribute('A variable of epic proportions.')

def _setup(app_obj):
"""
The setup function is called during application initialization and
must 'setup' the handler object making it ready for the framework
or the application to make further calls to it.

Required Arguments:

app_obj
The application object.

Returns: n/a

"""

(continues on next page)

3.9. Developer Documentation 135

http://old.zope.org/Products/ZopeInterface

Cement Framework, Release 2.10.12

(continued from previous page)

def do_something():
"""
This function does something.

"""

class MyApp(CementApp):
class Meta:

label = 'myapp'
define_handlers = [MyInterface]

Alternatively, if you need more control you might define a handler this way:

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
define interfaces after app is created
app.handler.define(MyInterface)

app.run()

The above simply defines the interface. It does not implement any functionality, and can’t be used directly. This is
why the class functions do not have an argument of self, nor do they contain any code other than comments.

That said, what is required is an IMeta class that is used to interact with the interface. At the very least, this must
include a unique label to identify the interface. This can also be considered the ‘handler type’. For example, the
ILog interface has a label of log and any handlers registered to that interface are stored in HandlerManager.
__handlers__['log'].

Notice that we defined Meta and my_var as Interface Attributes. This is a simple identifier that describes an attribute
that an implementation is expected to provide.

Validating Interfaces

A validator call back function can be defined in the interfaces IMeta class like this:

from cement.core import interface

def my_validator(klass, obj):
members = [

'_setup',
'do_something',
'my_var',
]

interface.validate(MyInterface, obj, members)

class MyInterface(interface.Interface):
class IMeta:

label = 'myinterface'
validator = my_validator

...

When CementApp.handler.register() is called to register a handler to an interface, the validator is called
and the handler object is passed to the validator. In the above example, we simply define what members we want to
validate for and then call interface.validate() which will raise cement.core.exc.InterfaceError

136 Chapter 3. Documentation

Cement Framework, Release 2.10.12

if validation fails. It is not necessary to use interface.validate() but it is useful and recommended. In general,
the key thing to note is that a validator either raises InterfaceError or does nothing if validation passes.

Registering Handlers to an Interface

An interface simply defines what an implementation is expected to provide, where a handler actually implements the
interface. The following example is a handler that implements the MyInterface above:

from cement.core.foundation import CementApp
from cement.core.handler import CementBaseHandler
from myapp.interfaces import MyInterface

class MyHandler(CementBaseHandler):
class Meta:

interface = MyInterface
label = 'my_handler'
description = 'This handler implements MyInterface'
config_defaults = dict(

foo='bar'
)

my_var = 'This is my var'

def __init__(self):
self.app = None

def _setup(self, app_obj):
self.app = app_obj

def do_something(self):
print "Doing work!"

class MyApp(CementApp):
class Meta:

label = 'myapp'
handlers = [MyHandler]

Alternatively, if you need more control you might use this approach:

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
register handler after the app is created
app.handler.register(MyHandler)

app.run()

The above is a simple class that meets all the expectations of the interface. When calling CementApp.handler.
register(), MyHandler is passed to the validator (if defined in the interface) and if it passes validation will be
registered into HandlerManager.__handlers__.

Using Handlers

The following are a few examples of working with handlers:

3.9. Developer Documentation 137

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
Get a log handler called 'logging'
lh = app.handler.get('log', 'logging')

Instantiate the handler class, passing any keyword arguments that
the handler supports.
log = log_handler()

Setup the handler, passing it the app object.
log._setup(app)

List all handlers of type 'config'
app.handler.list('config')

Check if an interface called 'output' is defined
app.handler.defined('output')

Check if the handler 'argparse' is registered to the 'argument'
interface
app.handler.registered('argument', 'argparse')

It is important to note that handlers are stored with the app as uninstantiated objects. Meaning you must instantiate
them after retrieval, and call _setup(app) when using handlers directly (as in the above example).

Overriding Default Handlers

Cement sets up a number of default handlers for logging, config parsing, etc. These can be overridden in a number of
ways. The first way is by passing them as keyword arguments to CementApp:

from cement.core.foundation import CementApp
from myapp.log import MyLogHandler

Create the application
app = CementApp('myapp', log_handler=MyLogHandler)
app.setup()
app.run()
app.close()

The second way to override a handler is by setting it directly in the CementApp meta data:

from cement.core.foundation import CementApp
from myapp.log import MyLogHandler

class MyApp(CementApp):
class Meta:

label = 'myapp'
log_handler = MyLogHandler

with MyApp() as app:
app.run()

There are times that you may want to pre-instantiate handlers before passing them to CementApp(). The following
works just the same:

138 Chapter 3. Documentation

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp
from myapp.log import MyLogHandler

my_log = MyLogHandler(some_param='some_value')

class MyApp(CementApp):
class Meta:

label = 'myapp'
log_handler = my_log

with MyApp() as app:
app.run()

To see what default handlers can be overridden, see the cement.core.foundation documentation.

Multiple Registered Handlers

All handlers and interfaces are unique. In most cases, where the framework is concerned, only one handler is used.
For example, whatever is configured for the log_handler will be used and setup as app.log. However, take
for example an Output Handler. You might have a default output_handler of mustache’ (a text templating
language) but may also want to override that handler with the json output handler when -o json is passed at
command line. In order to allow this functionality, both the mustache and json output handlers must be registered.

Any number of handlers can be registered to an interface. You might have a use case for an Interface/Handler that may
provide different compatibility base on the operating system, or perhaps based on simply how the application is called.
A good example would be an application that automates building packages for Linux distributions. An interface would
define what a build handler needs to provide, but the build handler would be different based on the OS. The application
might have an rpm build handler, or a dpkg build handler to perform the build process differently.

Customizing Handlers

The most common way to customize a handler is to subclass it, and then pass it to CementApp:

from cement.core.foundation import CementApp
from cement.lib.ext_logging import LoggingLogHandler

class MyLogHandler(LoggingLogHandler):
class Meta:

label = 'mylog'

def info(self, msg):
do something to customize this function, here...
super(MyLogHandler, self).info(msg)

app = CementApp('myapp', log_handler=MyLogHandler)

Handler Default Configuration Settings

All handlers can define default config file settings via their config_defaults meta option. These will be merged
into the app.config under the [handler_interface].[handler_label] section. These settings are
overridden in the following order.

• The config_defaults dictionary passed to CementApp

3.9. Developer Documentation 139

Cement Framework, Release 2.10.12

• Via any application config files with a [handler_interface].[handler_type] block (i.e. cache.
memcached)

The following shows how to override defaults by passing them with the defaults dictionary to CementApp:

from cement.core import foundation
from cement.utils.misc import init_defaults

defaults = init_defaults('myinterface.myhandler')
defaults['myinterface.myhandler'] = dict(foo='bar')
app = foundation.CementApp('myapp', config_defaults=defaults)

Cement will use all defaults set via MyHandler.Meta.config_defaults (for this example), and then override
just what is passed via config_defaults['myinterface.myhandler']. You should use this approach
only to modify the global defaults for your application. The second way is to then set configuration file defaults under
the [myinterface.myhandler] section. For example:

my.config

[myinterface.myhandler]
foo = bar

In the real world this may look like [cache.memcached], or [database.mysql] depending on what the
interface label, and handler label’s are. Additionally, individual handlers can override their config section by setting
Meta.config_section.

Overriding Handlers Via Command Line

In some use cases, you will want the end user to have access to override the default handler of a particular interface. For
example, Cement ships with multiple Output Handlers including json, yaml, and mustache. A typical application
might default to using mustache to render console output from text templates. That said, without changing any code
in the application, the end user can simply pass the -o json command line option and output the same data that is
rendered to template, out in pure JSON.

The only built-in handler override that Cement includes is for the above mentioned example, but you can add any that
your application requires.

The following example shows this in action. . . note that the following is already setup by Cement, but we’re putting it
here for clarity:

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'

define what extensions we want to load
extensions = ['mustache', 'json', 'yaml']

define our default output handler
output_handler = 'mustache'

define our handler override options
handler_override_options = dict(

output = (['-o'], dict(help='output format')),
)

(continues on next page)

140 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

with MyApp() as app:
run the application
app.run()

define some data for the output handler
data = dict(foo='bar')

render something using out output handlers, using mustache by
default which will use the default.m templae
app.render(data, 'default.m')

Note what we see at command line:

$ python myapp.py --help
usage: myapp.py [-h] [--debug] [--quiet] [-o {yaml,json}]

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
-o {yaml,json} output format

Notice the -o command line option, that includes the choices: yaml and json. This feature will include all Output
Handlers that have the overridable meta-data option set to True. The MustacheOutputHandler does not set this
option, therefore it does not show up as a valid choice.

Now what happens when we run it?

$ python myapp.py

This text is being rendered via Mustache.
The value of the 'foo' variable is => 'bar'

The above is the default output, using mustache as our output_handler, and rendering the output text from a
template called default.m. We can now override the output handler using the -o option and modify the output
format:

$ python myapp.py -o json
{"foo": "bar"}

Again, any handler can be overridden in this fashion.

3.9.4 Configuration Handling

Cement defines a configuration interface called IConfig, as well as the default ConfigParserConfigHandler that im-
plements the interface. This handler is built on top of ConfigParser which is included in the Python standard library.
Therefor, this class will work much like ConfigParser but with any added functions necessary to meet the requirements
of the IConfig interface.

Please note that there are other handlers that implement the IConfig interface. The documentation below only
references usage based on the interface and not the full capabilities of the implementation.

The following config handlers are included and maintained with Cement:

• ConfigParserConfigHandler (default)

3.9. Developer Documentation 141

http://docs.python.org/library/configparser.html

Cement Framework, Release 2.10.12

• ConfigObjConfigHandler

• JsonConfigHandler

• JsonConfigObjConfigHandler

• YamlConfigHandler

• YamlConfigObjHandler

Please reference the IConfig interface documentation for writing your own config handler.

Configuration Ordering

An applications configuration is made up of a number of things, including default settings, handler defaults, config file
settings, etc. The following is the order in which configurations are discovered and loaded:

• Defaults defined in CementApp.Meta.config_defaults or passed as config_defaults keyword
to CementApp

• Extended by CementBaseHandler.Meta.config_defaults (not overridden)

• Overridden by configuration files defined in CementApp.Meta.config_files in the order they are
listed/loaded (last has precedence)

• Overridden by command line options that match the same key name (only if CementApp.Meta.
arguments_override_config == True or if the argument name is listed in CementApp.Meta.
override_arguments)

Application Default Settings

Cement does not require default config settings in order to operate. That said, these settings are found under the
app_label application section of the configuration, and overridden by a [<app_label>] block from a configu-
ration file.

A default dictionary is used if no other defaults are passed when creating an application. For example, the following:

from cement.core import foundation
app = foundation.CementApp('myapp')

Is equivalent to:

from cement.core import foundation
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp')
app = foundation.CementApp('myapp', config_defaults=defaults)

That said, you can override default settings or add your own defaults like so:

from cement.core import foundation
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'section1','section2')
defaults['section1']['foo'] = 'bar'
defaults['section2']['foo2'] = 'bar2'

app = foundation.CementApp('myapp', config_defaults=defaults)

142 Chapter 3. Documentation

Cement Framework, Release 2.10.12

It is important to note that the default settings, which is a dict, is parsed by the config handler and loaded into it’s own
configuration mechanism. Meaning, though some config handlers (i.e. ConfigObjConfigHandler) might also
be accessible like a dict, not all do (i.e. ConfigParserConfigHandler). Please see the documentation for the
config handler you use for their full usage when accessing the app.config object.

Built-in Defaults

The following are not required to exist in the config defaults, however if they do, Cement will honor them (overriding
or appending to built-in defaults).

debug = False Toggles debug output. By default, this setting is also overridden by the
[<app_label>] -> debug config setting parsed in any of the application configuration files.

ignore_deprecation_warnings = False Disable deprecation warnings from being logged by Cement.

extensions = None List of additional framework extensions to load. Any extensions defined here will be
appended to the application’s defined extensions.

plugin_config_dir = None A directory path where plugin config files can be found. Files must
end in .conf. By default, this setting is also overridden by the [<app_label>] ->
plugin_config_dir config setting parsed in any of the application configuration files.

If set, this item will be appended to CementApp.Meta.plugin_config_dirs so that it’s
settings will have presedence over other config files.

In general, this setting should not be defined by the developer, as it is primarily used to allow the
end-user to define a plugin_config_dir without completely trumping the hard-coded list of
default plugin_config_dirs defined by the app/developer.

plugin_dir = None A directory path where plugin code (modules) can be loaded from. By default, this
setting is also overridden by the [<app_label>] -> plugin_dir config setting parsed in
any of the application configuration files.

If set, this item will be prepended to CementApp.Meta.plugin_dirs so that a user’s defined
plugin_dir has precedence over other plugin_dirs.

In general, this setting should not be defined by the developer, as it is primarily used to allow
the end-user to define a plugin_dir without completely trumping the hard-coded list of default
plugin_dirs defined by the app/developer.

template_dir = None A directory path where template files can be loaded from. By default, this setting
is also overridden by the [<app_label>] -> template_dir config setting parsed in any of
the application configuration files.

If set, this item will be appended to CementApp.Meta.template_dirs.

In general, this setting should not be defined by the developer, as it is primarily used to allow the
end-user to define a template_dir without completely trumping the hard-coded list of default
template_dirs defined by the app/developer.

Application Configuration Defaults vs Handler Configuration Defaults

There may be slight confusion between the CementApp.Meta.config_defaults and the
CementBaseHandler.Meta.config_defaults options. They both are very similar, however the ap-
plication level configuration defaults are intended to be used to set defaults for multiple sections. Therefore, the
CementApp.Meta.config_defaults option is a dict with nested dict’s under it. Each key of the top level
dict relates to a config [section] and the nested dict are the settings for that [section].

3.9. Developer Documentation 143

Cement Framework, Release 2.10.12

The CementBaseHandler.Meta.config_defaults only partain to a single [section] and therefor is
only a single level dict, whose settings are applied to the CementBaseHandler.Meta.config_section of
the application’s configuration.

Accessing Configuration Settings

After application creation and setup, you can access the config handler via the app.config object. For example:

from cement.core import foundation
app = foundation.CementApp('myapp')

First setup the application
app.setup()

Get settings
app.config.get('myapp', 'debug')

Set settings
app.config.set('myapp', 'debug', True)

Get sections (configuration [blocks])
app.config.get_sections()

Add a section
app.config.add_section('my_config_section')

Test if a section exists
app.config.has_section('my_config_section')

Get configuration keys for the 'myapp' section
app.config.keys('myapp')

Test if a key exist
if 'debug' in app.config.keys('myapp')

Merge a dict of settings into the config
other_config = dict()
other_config['myapp'] = dict()
other_config['myapp']['foo'] = 'not bar'
app.config.merge(other_config)

Parsing Config Files

Most applications benefit from allowing their users to customize runtime via a configuration file. This can be done by:

from cement.core import foundation
app = foundation.CementApp('myapp')

First setup the application
app.setup()

Parse a configuration file
app.config.parse_file('/path/to/some/file.conf')

Note that Cement automatically parses any config files listed in the CementApp.Meta.config_files list. For
example:

144 Chapter 3. Documentation

Cement Framework, Release 2.10.12

from cement.core import foundation, backend

app = foundation.CementApp('myapp',
config_files = [

'/path/to/config1',
'/path/to/config2'
],

)

If no config_files meta is provided, Cement will set the defaults to the following common and sane defaults:

• /etc/<app_label>/<app_label>.conf

• ~/.<app_label>.conf

• ~/.<app_label>/config

Overriding Configurations with Command Line Options

Config settings can optionally overridden by a passed command line option if the option name matches a configuration
key. Note that this will happen in all config sections if enabled:

from cement.core.foundation import CementApp
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp')
defaults['myapp']['foo'] = 'bar'

class MyApp(CementApp):
class Meta:

label = 'myapp'
config_defaults = defaults
arguments_override_config = True

with MyApp() as app:
app.args.add_argument('--foo', action='store', dest='foo')
app.run()

With arguments_override_config enabled, running the above application and passing the
--foo=some_value option will override the foo setting under a [myapp] configuration section as well
as any other section that has a matching foo key.

Configuration Options Versus Meta Options

As you will see extensively throughout the Cement code is the use of Meta options. There can be some confusion
between the use of Meta options, and application configuration options. The following explains the two:

Configuration Options

Configuration options are application specific. There are config defaults defined by the application developer, that can
be (and are intended to be) overridden by user defined settings in a configuration file.

Cement does not rely on the application configuration, though it can honor configuration settings. For example,
CementApp honors the debug config option which is documented, but it doesn’t rely on it existing either.

The key things to note about configuration options are:

• They give the end user flexibility in how the application operates.

3.9. Developer Documentation 145

Cement Framework, Release 2.10.12

• Anything that you want users to be able to customize via a config file. For example, the path to a log file or the
location of a database server. These are things that you do not want hard-coded into your app, but rather might
want sane defaults for.

Meta Options

Meta options are used on the backend by developers to alter how classes operate. For example, the CementApp class
has a meta option of log_handler. The default log handler is LoggingLogHandler, however because this is
built on an interface definition, Cement can use any other log handler the same way without issue as long as that log
handler abides by the interface definition. Meta options make this change seamless and allows the handler to alter
functionality, rather than having to change code in the top level class itself.

The key thing to note about Meta options are:

• They give the developer flexibility in how the code operates.

• End users should not have access to modify Meta options via a config file or similar ‘dynamic’ configuration
(unless those specific options are listed in CementApp.Meta.core_meta_override or CementApp.
Meta.meta_override (for example, the debug setting under [<app_label>] overrides CementApp.
Meta.debug by default.

• Meta options are used to alter how classes work, however are considered ‘hard-coded’ settings. If the developer
chooses to alter a Meta option, it is for the life of that release.

• Meta options should have a sane default, and be clearly documented.

3.9.5 Argument and Option Handling

Cement defines an argument interface called IArgument, as well as the default ArgParseArgumentHandler that imple-
ments the interface. This handler is built on top of the ArgParse module which is included in the Python standard
library.

Please note that there may be other handler’s that implement the IArgument interface. The documentation below
only references usage based on the interface and not the full capabilities of the implementation.

The following argument handlers are included and maintained with Cement:

• ArgParseArgumentHandler

Please reference the IArgument interface documentation for writing your own argument handler.

Adding Arguments

The IArgument interface is loosely based on ArgParse directly. That said, it only defines a minimal set of params
that must be honored by the handler implementation, even though the handler itself may except more than that. The
following shows some basic examples of adding arguments based on the interface (meaning, these examples should
work regardless of what the handler is):

from cement.core import foundation

create the application
app = foundation.CementApp('myapp')

then setup the application... which will use our 'mylog' handler
app.setup()

add any arguments after setup(), and before run()
app.args.add_argument('-f', '--foo', action='store', dest='foo',

(continues on next page)

146 Chapter 3. Documentation

http://docs.python.org/library/argparse.html

Cement Framework, Release 2.10.12

(continued from previous page)

help='the notorious foo option')
app.args.add_argument('-V', action='store_true', dest='vendetta',

help='v for vendetta')
app.args.add_argument('-A', action='store_const', const=12345,

help='the big a option')

then run the application
app.run()

access the parsed args from the app.pargs shortcut
if app.pargs.foo:

print "Received foo option with value %s" % app.pargs.foo
if app.pargs.vendetta:

print "Received V for Vendetta!"
if app.pargs.A:

print "Received the A option with value %s" % app.pargs.A

close the application
app.close()

Here we have setup a basic application, and then add a few arguments to the parser.

$ python test.py --help
usage: test.py [-h] [--debug] [--quiet] [-f FOO] [-V] [-A]

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
-f FOO, --foo FOO the notorious foo option
-V v for vendetta
-A the big a option

$ python test.py --foo=bar
Received foo option with value bar

$ python test.py -V
Received V for Vendetta!

Accessing Parsed Arguments

The IArgument interface defines that the parse() function return any type of object that stores the name
of the argument as a class member. Meaning, when adding the foo option with action='store' and
the value is stored as the foo destination. . . that would be accessible as app.pargs.foo. In the case of
the ArgParseArgumentHandler the return object is exactly what you would expect by calling parser.
parse_args(), but may be different with other argument handler implementations.

The parsed arguments are actually stored as app._parsed_args, but are exposed as app.pargs. Accessing
app.pargs can be seen in the examples above.

3.9.6 Log Handling

Cement defines a logging interface called ILog, as well as the default LoggingLogHandler that implements the inter-
face. This handler is built on top of the Logging module which is included in the Python standard library.

3.9. Developer Documentation 147

http://docs.python.org/library/logging.html

Cement Framework, Release 2.10.12

Please note that there may be other handler’s that implement the ILog interface. The documentation below only
references usage based on the interface and not the full capabilities of the implementation.

The following log handlers are included and maintained with Cement:

• LoggingLogHandler

• ColorLogHandler

Please reference the ILog interface documentation for writing your own log handler.

Logging Messages

The following shows logging to each of the defined log levels.

from cement.core import foundation
app = foundation.CementApp('myapp')

First setup the application
app.setup()

Run the application (even though it doesn't do much here)
app.run()

Log a debug message
app.log.debug('This is a debug message.')

Log an info message
app.log.info('This is an info message.')

Log a warning message
app.log.warning('This is a warning message.')

Log an error message
app.log.error('This is an error message.')

Log an fatal error message
app.log.fatal('This is a fatal message.')

Close the application
app.close()

The above is displayed in order of ‘severity’ you can say. If the log level is set to ‘INFO’, you will receive all ‘info’
messages and above .. including warning, error, and fatal. However, you will not receive DEBUG level messages. The
same goes for a log level of ‘WARNING’, where you will receive warning, error, and fatal. . . but you will not receive
INFO, or DEBUG level messages.

Changing Log Level

The log level defaults to INFO, based on the ‘config_defaults’ of the log handler. You can override this via con-
fig_defaults:

from cement.core import foundation, backend
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'log.logging')
defaults['log.logging']['level'] = 'WARNING'

(continues on next page)

148 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

app = foundation.CementApp('myapp', config_defaults=defaults)
app.setup()

This will also be overridden by the ‘level’ setting under a ‘[log.logging]’ section in any of the applications configuration
files that are parsed.

You should also note that Cement includes a ‘–debug’ command line option by default. This triggers the log level to
‘DEBUG’ and is helpful for quickly debugging issues:

$ python test.py --debug
2012-07-13 02:19:42,270 (DEBUG) cement.core.foundation : laying cement for the 'myapp
→˓' application
2012-07-13 02:19:42,270 (DEBUG) cement.core.hook : defining hook 'pre_setup'
2012-07-13 02:19:42,270 (DEBUG) cement.core.hook : defining hook 'post_setup'
2012-07-13 02:19:42,270 (DEBUG) cement.core.hook : defining hook 'pre_run'
2012-07-13 02:19:42,270 (DEBUG) cement.core.hook : defining hook 'post_run'
2012-07-13 02:19:42,271 (DEBUG) cement.core.hook : defining hook 'pre_close'
2012-07-13 02:19:42,271 (DEBUG) cement.core.hook : defining hook 'post_close'
2012-07-13 02:19:42,271 (DEBUG) cement.core.hook : defining hook 'signal'
2012-07-13 02:19:42,271 (DEBUG) cement.core.hook : defining hook 'pre_render'
2012-07-13 02:19:42,271 (DEBUG) cement.core.hook : defining hook 'post_render'
2012-07-13 02:19:42,271 (DEBUG) cement.core.handler : defining handler type 'extension
→˓' (IExtension)
2012-07-13 02:19:42,271 (DEBUG) cement.core.handler : defining handler type 'log'
→˓(ILog)
2012-07-13 02:19:42,271 (DEBUG) cement.core.handler : defining handler type 'config'
→˓(IConfig)
2012-07-13 02:19:42,271 (DEBUG) cement.core.handler : defining handler type 'plugin'
→˓(IPlugin)
2012-07-13 02:19:42,272 (DEBUG) cement.core.handler : defining handler type 'output'
→˓(IOutput)
2012-07-13 02:19:42,272 (DEBUG) cement.core.handler : defining handler type 'argument
→˓' (IArgument)
2012-07-13 02:19:42,272 (DEBUG) cement.core.handler : defining handler type
→˓'controller' (IController)
2012-07-13 02:19:42,272 (DEBUG) cement.core.handler : defining handler type 'cache'
→˓(ICache)
2012-07-13 02:19:42,272 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.core.extension.CementExtensionHandler'>' into handlers['extension']['cement
→˓']
2012-07-13 02:19:42,272 (DEBUG) cement.core.foundation : now setting up the 'myapp'
→˓application
2012-07-13 02:19:42,272 (DEBUG) cement.core.foundation : adding signal handler for
→˓signal 15
2012-07-13 02:19:42,273 (DEBUG) cement.core.foundation : adding signal handler for
→˓signal 2
2012-07-13 02:19:42,273 (DEBUG) cement.core.foundation : setting up myapp.extension
→˓handler
2012-07-13 02:19:42,273 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓dummy' framework extension
2012-07-13 02:19:42,273 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_dummy.DummyOutputHandler'>' into handlers['output']['null']
2012-07-13 02:19:42,273 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓plugin' framework extension
2012-07-13 02:19:42,273 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_plugin.CementPluginHandler'>' into handlers['plugin']['cement']

(continues on next page)

3.9. Developer Documentation 149

Cement Framework, Release 2.10.12

(continued from previous page)

2012-07-13 02:19:42,273 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓configparser' framework extension
2012-07-13 02:19:42,274 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_configparser.ConfigParserConfigHandler'>' into handlers['config'][
→˓'configparser']
2012-07-13 02:19:42,274 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓logging' framework extension
2012-07-13 02:19:42,274 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_logging.LoggingLogHandler'>' into handlers['log']['logging']
2012-07-13 02:19:42,274 (DEBUG) cement.core.extension : loading the 'cement.ext.ext_
→˓argparse' framework extension
2012-07-13 02:19:42,276 (DEBUG) cement.core.handler : registering handler '<class
→˓'cement.ext.ext_argparse.ArgParseArgumentHandler'>' into handlers['argument'][
→˓'argparse']
2012-07-13 02:19:42,276 (DEBUG) cement.core.foundation : setting up myapp.config
→˓handler
2012-07-13 02:19:42,276 (DEBUG) cement.ext.ext_configparser : config file '/etc/myapp/
→˓myapp.conf' does not exist, skipping...
2012-07-13 02:19:42,277 (DEBUG) cement.core.foundation : no cache handler defined,
→˓skipping.
2012-07-13 02:19:42,277 (DEBUG) cement.core.foundation : setting up myapp.log handler
2012-07-13 02:19:42,277 (DEBUG) cement.core.handler : merging config defaults from '
→˓<cement.ext.ext_logging.LoggingLogHandler object at 0x100588dd0>'
2012-07-13 02:19:42,277 (DEBUG) myapp : logging initialized for 'myapp' using
→˓LoggingLogHandler
2012-07-13 02:19:42,278 (DEBUG) cement.core.foundation : setting up myapp.plugin
→˓handler
2012-07-13 02:19:42,278 (DEBUG) cement.ext.ext_plugin : plugin config dir /etc/myapp/
→˓plugins.d does not exist.
2012-07-13 02:19:42,278 (DEBUG) cement.core.foundation : setting up myapp.arg handler
2012-07-13 02:19:42,279 (DEBUG) cement.core.foundation : setting up myapp.output
→˓handler
2012-07-13 02:19:42,279 (DEBUG) cement.core.foundation : setting up application
→˓controllers
2012-07-13 02:19:42,279 (DEBUG) cement.core.foundation : no controller could be found.
2012-07-13 02:19:42,280 (DEBUG) cement.core.foundation : closing the application

You can see that debug logging is extremely verbose. In the above you will note the message format is:

TIMESTAMP - LEVEL - MODULE - MESSAGE

The Cement framework only logs to DEBUG, where the MODULE is displayed as ‘cement.core.whatever’. Note
that Cement uses a minimal logger that is separate from the application log, therefore settings you change in your
application do not affect it.

Logging to Console

The default log handler configuration enables logging to console. For example:

from cement.core import foundation
app = foundation.CementApp('myapp')
app.setup()
app.run()
app.log.info('This is my info message')
app.close()

150 Chapter 3. Documentation

Cement Framework, Release 2.10.12

When running this script at command line you would get:

$ python test.py
INFO: This is my info message

This can be disabled by setting ‘to_console=False’ in either the application defaults, or in an application configuration
file under the ‘[log.logging]’ section.

Logging to a File

File logging is disabled by default, but is just one line to enable. Simply set the ‘file’ setting under the ‘[log.logging]’
config section either by application defaults, or via a configuration file.

from cement.core import foundation, backend
from cement.utils.misc import init_defaults

defaults = init_defaults('myapp', 'log.logging')
defaults['log.logging']['file'] = 'my.log'

app = foundation.CementApp('myapp', config_defaults=defaults)
app.setup()
app.run()
app.log.info('This is my info message')
app.close()

Running this we will see:

$ python test.py
INFO: This is my info message

$ cat my.log
2011-08-26 17:50:16,306 (INFO) myapp : This is my info message

Notice that the logging is a bit more verbose when logged to a file.

Tips on Debugging

Note: The following is specific to the default LoggingLogHandler only, and is not an implementation of the ILog
interface.

Logging to ‘app.log.debug()’ is pretty straight forward, however adding an additional parameter for the ‘namespace’
can greatly increase insight into where that log is happening. The ‘namespace’ defaults to the application name which
you will see in every log like this:

2012-07-30 18:05:11,357 (DEBUG) myapp : This is my message

For debugging, it might be more useful to change this to __name__:

app.log.debug('This is my info message', __name__)

Which looks like:

2012-07-30 18:05:11,357 (DEBUG) myapp.somepackage.test : This is my message

Or even more verbose, the __file__ and a line number of the log:

3.9. Developer Documentation 151

Cement Framework, Release 2.10.12

app.log.debug('This is my info message', '%s,L2734' % __file__)

Which looks like:

2012-07-30 18:05:11,357 (DEBUG) myapp/somepackage/test.py,L2345 : This is my message

You can override this with anything. . . it doesn’t have to be just for debugging.

3.9.7 Output Handling

Cement defines an output interface called cement.core.output.IOutput, as well as the default cement.
ext.ext_dummy.DummyOutputHandler that implements the interface. This handler is part of Cement, and
actually does nothing to produce output. Therefore it can be said that by default a Cement application does not handle
rendering output to the console, but can if another output handler be used.

Please note that there may be other handler’s that implement the IOutput interface. The documentation below only
references usage based on the interface and not the full capabilities of the implementation.

The following output handlers are included and maintained with Cement:

• cement.ext.ext_dummy.DummyOutputHandler

• cement.ext.ext_json.JsonOutputHandler

• cement.ext.ext_yaml.YamlOutputHandler

• cement.ext.ext_genshi.GenshiOutputHandler

• cement.ext.ext_handlebars.HandlebarsOutputHandler

• cement.ext.ext_jinja2.Jinja2OutputHandler

• cement.ext.ext_mustache.MustacheOutputHandler

• cement.ext.ext_tabulate.TabulateOutputHandler

Please reference the cement.core.output.IOutput interface documentation for writing your own output han-
dler.

Rending Output

Cement applications do not need to use an output handler by any means. Most small applications can get away with
simple print() statements. However, anyone who has ever built a bigger application that produces a lot of output
will know that this can get ugly very quickly in your code.

Using an output handler allows the developer to keep their logic clean, and offload the display of relevant data to an
output handler, possibly by templates or other means (GUI?).

An output handler has a render() function that takes a data dictionary to produce output. Some output handlers
may also accept a template or other parameters that define how output is rendered. This is easily accessible by the
application object.

from cement.core import foundation, output

Create the application
app = foundation.CementApp('myapp')

Setup the application
app.setup()

(continues on next page)

152 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

Run the application
app.run()

Add application logic
data = dict(foo='bar')
app.render(data)

Close the application
app.close()

The above example uses the default output handler, therefore nothing is displayed on screen. That said, if we write
our own quickly we can see something happen:

from cement.core import foundation, handler, output

Create a custom output handler
class MyOutput(output.CementOutputHandler):

class Meta:
label = 'myoutput'

def render(self, data):
for key in data:

print "%s => %s" % (key, data[key])

app = foundation.CementApp('myapp', output_handler=MyOutputHandler)
...

Which looks like:

$ python test.py
foo => bar

Rendering Output Via Templates

An extremely powerful feature of Cement is the ability to offload console output to a template output handler. Several
are inluded with Cement but not enabled by default (listed above). The following example shows the use of the
Mustache templating langugage, as well as Json output handling.

myapp.py

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class MyBaseController(CementBaseController):
class Meta:

label = 'base'
description = 'MyApp Does Amazing Things'

@expose(hide=True)
def default(self):

data = dict(foo='bar')
self.app.render(data, 'default.m')

(continues on next page)

3.9. Developer Documentation 153

Cement Framework, Release 2.10.12

(continued from previous page)

always return the data, some output handlers require this
such as Json/Yaml (which don't use templates)
return data

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = MyBaseController
extensions = ['mustache', 'json']

default output handler
output_handler = 'mustache'

with MyApp() as app:
app.run()

/usr/lib/myapp/templates/default.m

This is the output of the MyBaseController.default() command.

The value of the 'foo' variable is => '{{foo}}'

And this looks like:

$ python myapp.py

This is the output of the MyBaseController.default() command.

The value of the 'foo' variable is => 'bar'

Optionally, we can use the JsonOutputHandler via -o json to trigger just Json output (supressing all other
output) using our return dictionary:

$ python myapp.py -o json
{"foo": "bar"}

3.9.8 Application Controllers

Cement defines a controller interface called IController, but does not enable any default handlers that implement the
interface.

Using application controllers is not necessary, but enables rapid development by wrapping pieces of the frame-
work like adding arguments, and linking commands with functions to name a few. The examples below use the
CementBaseController for examples. It is important to note that this class also requires that your application’s
argument_handler be the ArgParseArgumentHandler. That said, the CementBaseController is relatively
useless when used directly and therefore should be used as a Base class to create your own application controllers
from.

The following controllers are included and maintained with Cement:

• CementBaseController

Please reference the IController interface documentation for writing your own controller.

154 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Example Application Base Controller

This example demonstrates the use of application controllers that handle command dispatch and rapid development.

from cement.core import backend,
from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

define an application base controller
class MyAppBaseController(CementBaseController):

class Meta:
label = 'base'
description = "My Application does amazing things!"
epilog = "This is the text at the bottom of --help."

config_defaults = dict(
foo='bar',
some_other_option='my default value',
)

arguments = [
(['-f', '--foo'],
dict(action='store', help='the notorious foo option')),

(['-C'],
dict(action='store_true', help='the big c option')),

]

@expose(hide=True, aliases=['run'])
def default(self):

self.app.log.info('Inside base.default function.')
if self.app.pargs.foo:

self.app.log.info("Recieved option 'foo' with value '%s'." % \
self.app.pargs.foo)

@expose(help="this command does relatively nothing useful.")
def command1(self):

self.app.log.info("Inside base.command1 function.")

@expose(aliases=['cmd2'], help="more of nothing.")
def command2(self):

self.app.log.info("Inside base.command2 function.")

class MyApp(CementApp):
class Meta:

label = 'example'
base_controller = MyAppBaseController

with MyApp() as app:
app.run()

As you can see, we’re able to build out the core functionality of our app via a controller class. Lets see what this looks
like:

$ python example.py --help
usage: example.py <CMD> -opt1 --opt2=VAL [arg1] [arg2] ...

(continues on next page)

3.9. Developer Documentation 155

Cement Framework, Release 2.10.12

(continued from previous page)

My Application does amazing things!

commands:

command1
this command does relatively nothing useful.

command2 (aliases: cmd2)
more of nothing.

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
--foo FOO the notorious foo option
-C the big C option

This is the text at the bottom of --help.

$ python example2.py
INFO: Inside base.default function.

$ python example2.py command1
INFO: Inside base.command1 function.

$ python example2.py cmd2
INFO: Inside base.command2 function.

Additional Controllers and Namespaces

Any number of additional controllers can be added to your application after a base controller is created. Additionally,
these controllers can be stacked onto the base controller (or any other controller) in one of two ways:

• embedded - The controllers commands and arguments are included under the parent controllers name space.

• nested - The controller label is added as a sub-command under the parent controllers namespace (effectively
this is a sub-command with additional sub-sub-commands under it)

For example, The base controller is accessed when calling example.py directly. Any commands under the
base controller would be accessible as example.py <cmd1>, or example.py <cmd2>, etc. An embedded
controller will merge its commands and options into the base controller namespace and appear to be part of
the base controller. . . meaning you would still access the embedded controllers commands as example.py
<embedded_cmd1>, etc (same for options).

For nested controllers, a prefix will be created with that controllers label under its parents namespace.
Therefore you would access that controllers commands and options as example.py <controller_label>
<controller_cmd1>.

See the Multiple Stacked Controllers example for more help.

3.9.9 Framework Extensions

Cement defines an extension interface called IExtension, as well as the default CementExtensionHandler that imple-
ments the interface. Its purpose is to manage loading framework extensions and making them usable by the application.
Extensions are similar to Application Plugins, but at the framework level (application agnostic).

156 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Please note that there may be other handler’s that implement the IExtension interface. The documentation below
only references usage based on the interface and not the full capabilities of the implementation.

The following extension handlers are included and maintained with Cement:

• CementExtensionHandler

Please reference the IExtension interface documentation for writing your own extension handler. Additionally, more
information on available extensions and their use can be found in the Cement API Documentation

Important Note: As of Cement 2.1.3, optional extensions with external dependencies are now being shipped along
with mainline sources. This means, that Cement Core continues to maintain a 100% zero dependency policy, however
Framework Extensions can rely on external deps. It is the responsibility of the application developer to include these
dependencies in their application (as the Cement package does not include these dependencies).

Extension Configuration Settings

The following Meta settings are honored under the CementApp:

extension_handler A handler class that implements the IExtension interface. This can be a string (label
of a registered handler), an uninstantiated class, or an instantiated class object. Default: CementEx-
tensionHandler.

core_extensions List of Cement core extensions. These are generally required by Cement and should
only be modified if you know what you’re doing. Use extensions to add to this list, rather than
overriding core extensions. That said if you want to prune down your application, you can remove
core extensions if they are not necessary (for example if using your own log handler extension you
likely don’t want/need LoggingLogHandler to be registered, but removing it really doesn’t buy
you much).

extensions List of additional framework extensions to load.

The following example shows how to alter these settings for your application:

from cement.core.foundation import CementApp
from cement.core.ext import CementExtensionHandler

class MyExtensionHandler(CementExtensionHandler):
pass

class MyApp(CementApp):
class Meta:

label = 'myapp'
extension_handler = MyExtensionHandler
extensions = ['myapp.ext.ext_something_fancy']

with MyApp() as app:
app.run()

Creating an Extension

The extension system is a mechanism for dynamically loading code to extend the functionality of the framework. In
general, this includes the registration of interfaces, handlers, and/or hooks.

The following is an example extension that provides an Output Handler. We will assume this extension is part of our
myapp application, and the extension module will be myapp.ext.ext_myoutput (or whatever you want to call
it).

3.9. Developer Documentation 157

Cement Framework, Release 2.10.12

from cement.core import handler, output
from cement.utils.misc import minimal_logger

LOG = minimal_logger(__name__)

class MyOutputHandler(output.CementOutputHandler):
class Meta:

label = 'myoutput'

def render(self, data_dict, template=None):
LOG.debug("Rendering output via MyAppOutputHandler")
for key in data_dict.keys():

print "%s => %s" % (key, data_dict[key])

def load(app):
handler.register(MyOutputHandler)

Take note of two things. One is, the LOG we are using is from cement.utils.misc.
minimal_logger(__name__). Framework extensions do not use the application log handler, ever. Use
the minimal_logger(), and only log to ‘DEBUG’ (recommended).

Secondly, in our extension file we need to define any interfaces, and register handlers and/or hooks if necessary.
In this example we only needed to register our output handler (which happens when the extension is loaded by the
application).

Last, notice that all bootstrapping code goes in a load() function. This is where registration of handlers/hooks
should happen. For convenience, and certain edge cases, the app object is passed here in its current state at the time
that load() is called.

You will notice that extensions are essentially the same as application plugins, however the difference is both when/how
the code is loaded, as well as the purpose of that code. Framework extensions add functionality to the framework for
the application to utilize, where application plugins extend the functionality of the application itself.

Loading an Extension

Extensions are loaded when setup() is called on an application. Cement automatically loads all extensions listed
under the applications core_extensions and extensions meta options.

To load the above example into our application, we just add it to the list of extensions (not core extensions). Lets
assume the extension code lives in myapp/ext/ext_something_fancy.py:

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['myapp.ext.ext_something_fancy']

with MyApp() as app:
app.run()

Note that Cement provides a shortcut for Cement extensions. For example, the following:

CementApp('myapp', extensions=['json', 'daemon'])

Is equivalent to:

158 Chapter 3. Documentation

Cement Framework, Release 2.10.12

CementApp('myapp',
extensions=[

'cement.ext.ext_json',
'cement.ext.ext_daemon',
]

)

For non-cement extensions you need to use the full python ‘dotted’ module path.

Loading Extensions Via a Configuration File

Some use cases require that end-users are able to modify what framework extensions are loaded via a configuration
file. The following gives an example of how an application can support an optional extensions configuration
setting that will append extensions to CementApp.Meta.extensions.

Note that extensions loaded in this way will happen after the config handler is setup. Normally, extensions are loaded
just before the configuration files are read. Therefore, some extensions may not be compatible with this method
if they attempt to perform any actions before app.setup() completes (such as in early framework hooks before
configuration files are loaded).

myapp.py

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
config_files = [

'./myapp.conf',
]

def main():
with MyApp() as app:

app.run()

if __name__ == '__main__':
main()

myapp.conf

[myapp]
extensions = json, yaml

Which looks like:

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

MyApp Does Amazing Things

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
-o {json,yaml} output format

3.9. Developer Documentation 159

Cement Framework, Release 2.10.12

Note the -o command line option that are provided by Cement allowing the end user to override the output handler
with the available/loaded extensions (that support this feature).

3.9.10 Application Plugins

Cement defines a plugin interface called IPlugin, as well as the default CementPluginHandler that implements the
interface.

Please note that there may be other handlers that implement the IPlugin interface. The documentation below only
references usage based on the interface and not the full capabilities of the implementation.

The following plugin handlers are included and maintained with Cement:

• CementPluginHandler

Please reference the IPlugin interface documentation for writing your own plugin handler.

Plugin Configuration Settings

There are a few settings related to how plugins are loaded under an applications meta options. These are:

plugins = [] A list of plugins to load. This is generally considered bad practice since plugins should be dynamically
enabled/disabled via a plugin config file.

plugin_config_dirs = None A list of directory paths where plugin config files can be found. Files must end in .conf
(or the extension defined by CementApp.Meta.config_extension), or they will be ignored.

Note: Though CementApp.Meta.plugin_config_dirs is None, Cement will set this to a default list
based on CementApp.Meta.label. This will equate to:

['/etc/<app_label>/plugins.d', '~/.<app_label>/plugin.d']

Files are loaded in order, and have precedence in that order. Therefore, the last configuration loaded has prece-
dence (and overwrites settings loaded from previous configuration files).

plugin_config_dir = None A directory path where plugin config files can be found. Files must end in .conf (or the
extension defined by CementApp.Meta.config_extension), or they will be ignored. By default, this
setting is also overridden by the [<app_label>] -> plugin_config_dir config setting parsed in any
of the application configuration files.

If set, this item will be appended to CementApp.Meta.plugin_config_dirs so that it’s settings will
have presedence over other configuration files.

In general, this setting should not be defined by the developer, as it is primarily used to allow the
end-user to define a plugin_config_dir without completely trumping the hard-coded list of default
plugin_config_dirs defined by the app/developer.

plugin_bootstrap = None A python package (dotted import path) where plugin code can be loaded from. This is
generally something like myapp.pluginswhere a plugin file would live at myapp/plugins/myplugin.
py or myapp/plugins/myplugin/__init__.py. This provides a facility for applications that have
builtin plugins that ship with the applications source code and live in the same Python module.

Note: Though the meta default is None, Cement will set this to <app_label>.plugins if not set.

plugin_dirs = None A list of directory paths where plugin code (modules) can be loaded from.

Note: Though CementApp.Meta.plugin_dirs is None, Cement will set this to a default list based on
CementApp.Meta.label if not set. This will equate to:

160 Chapter 3. Documentation

Cement Framework, Release 2.10.12

['~/.<app_label>/plugins', '/usr/lib/<app_label>/plugins']

Modules are attempted to be loaded in order, and will stop loading once a plugin is successfully loaded from a
directory. Therefore this is the oposite of configuration file loading, in that here the first has precedence.

plugin_dir = None A directory path where plugin code (modules) can be loaded from. By default, this setting is
also overridden by the [<app_label>] -> plugin_dir config setting parsed in any of the application
configuration files.

If set, this item will be prepended to Meta.plugin_dirs so that a users defined plugin_dir has prece-
dence over others.

In general, this setting should not be defined by the developer, as it is primarily used to allow the end-user to
define a plugin_dir without completely trumping the hard-coded list of default plugin_dirs defined by
the app/developer.

Creating a Plugin

A plugin is essentially an extension of a Cement application, that is loaded from an internal or external source location.
It is a mechanism for dynamically loading code (whether the plugin is enabled or not). It can contain any code that
would normally be part of your application, but should be thought of as optional features, where the core application
does not rely on that code to operate.

The following is an example plugin (single file) that provides a number of options and commands via an application
controller:

myplugin.py

from cement.core.controller import CementBaseController, expose

class MyPluginController(CementBaseController):
class Meta:

label = 'myplugin'
description = 'this is my controller description'
stacked_on = 'base'

config_defaults = dict(
foo='bar',
)

arguments = [
(['--foo'],
dict(action='store', help='the infamous foo option')),

]

@expose(help="this is my command description")
def mycommand(self):

print 'in MyPlugin.mycommand()'

def load(app):
app.handler.register(MyPluginController)

As you can see, this is very similar to an application that has a base controller, however as you’ll note we do not create
an application object via foundation.CementApp() like we do in our application. This code/file would then be
saved to a location defined by your applications configuration that determines where plugins are loaded from (see the
next section).

3.9. Developer Documentation 161

Cement Framework, Release 2.10.12

Notice that all ‘bootstrapping’ code goes in a load() function. This is where registration of handlers/hooks should
happen. For convenience, and certain edge cases, the app object is passed here in its current state at the time that
load() is called. You do not need to do anything with the app object, but you can.

A plugin also has a configuration file that will be Cement will attempt to find in one of the directories listed in
CementApp.Meta.plugin_config_dirs as defined by your application’s configuration. The following is an
example plugin configuration file:

myplugin.conf

[myplugin]
enable_plugin = true
foo = bar

Loading a Plugin

Plugin modules are looked for first in one of the defined plugin_dirs, and if not found then Cement attempts to
load them from the plugin_bootstrap. The following application shows how to configure an application to load
plugins. Take note that these are the default settings and will work the same if not defined:

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class MyBaseController(CementBaseController):
class Meta:

label = 'base'
description = 'MyApp Does Amazing Things'

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = MyBaseController
plugin_bootstrap='myapp.bootstrap',
plugin_config_dirs=[

'/etc/myapp/plugins.d',
'~/.myapp/plugins.d',
]

plugin_dirs=[
'/usr/lib/myapp/plugins',
'~/.myapp/plugins',
]

def main():
with MyApp() as app:

app.run()

if __name__ == '__main__':
main()

We modified the default settings for plugin_config_dirs and plugin_dirs. These are the default settings
under Cementapp, however we have put them here for clarity.

Running this application will do nothing particularly special, however the following demonstrates what happens when
we add a simple plugin that provides an application controller:

/etc/myapp/plugins.d/myplugin.conf

162 Chapter 3. Documentation

Cement Framework, Release 2.10.12

[myplugin]
enable_plugin = true
some_option = some value

/usr/lib/myapp/plugins/myplugin.py

from cement.core.controller import CementBaseController, expose
from cement.utils.misc import init_defaults

defaults = init_defaults('myplugin')

class MyPluginController(CementBaseController):
class Meta:

label = 'myplugin'
description = 'this is my plugin description'
stacked_on = 'base'
config_defaults = defaults
arguments = [

(['--some-option'], dict(action='store')),
]

@expose(help="this is my command description")
def my_plugin_command(self):

print 'In MyPlugin.my_plugin_command()'

def load(app):
app.handler.register(MyPluginController)

Running our application with the plugin disabled, we see:

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

MyApp Does Amazing Things

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output

But if we enable the plugin, we get something a little different:

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

MyApp Does Amazing Things

commands:

my-plugin-command
this is my command description

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
--some-option SOME_OPTION

3.9. Developer Documentation 163

Cement Framework, Release 2.10.12

We can see that the my-plugin-command and the --some-option option were provided by our plugin, which
has been ‘stacked’ on top of the base controller.

User Defined Plugin Configuration and Module Directories

Most applications will want to provide the ability for the end-user to define where plugin configurations and modules
live. This is possible by setting the plugin_config_dir and plugin_dir settings in any of the applications
configuration files. Note that these paths will be added to the built-in plugin_config_dirs and plugin_dirs
settings respectively, rather than completely overwriting them. Therefore, your application can maintain it’s default
list of plugin configuration and module paths while also allowing users to define their own.

/etc/myapp/myapp.conf

[myapp]
plugin_dir = /usr/lib/myapp/plugins
plugin_config_dir = /etc/myapp/plugins.d

The plugin_bootstrap setting is however only configurable within the application itself.

What Can Go Into a Plugin?

The above example shows how to add an optional application controller via a plugin, however a plugin can contain
anything you want. This could be as simple as adding a hook that does something magical. For example:

from cement.core import hook

def my_magical_hook(app):
do something magical
print('Something Magical is Happening!')

def load(app):
hook.register('post_setup', my_magical_hook)

And with the plugin enabled, we get this when we run the same app defined above:

$ python myapp.py
Something Magical is Happening!

The primary detail is that Cement calls the load() function of a plugin. . . after that, you can do anything you like.

Single File Plugins vs. Plugin Directories

As of Cement 2.9.x, plugins can be either a single file (i.e myplugin.py) or a python module directory (i.e.
myplugin/__init__.py). Both will be loaded and executed the exact same way.

One caveat however, is that the submodules referenced from within a plugin directory must be relative path. For
example:

myplugin/__init__.py

from .controllers import MyPluginController

def load(app):
app.handler.register(MyPluginController)

myplugin/controllers.py

164 Chapter 3. Documentation

Cement Framework, Release 2.10.12

from cement.core.controller import CementBaseController, expose

class MyPluginController(CementBaseController):
class Meta:

label = 'myplugin'
stacked_on = 'base'
stacked_type = 'embedded'

@expose()
def my_command(self):

print('Inside MyPluginController.my_command()')

Loading Templates From Plugin Directories

A common use case for complex applications is to use an output handler the uses templates, such as Mustache, Genshi,
Jinja2, etc. In order for a plugin to use it’s own template files it’s templates directory first needs to be added to the list
of template directories to be parsed. In the future, this will be more streamlined however currently the following is the
recommeded way:

myplugin/__init__.py

def add_template_dir(app):
path = os.path.join(os.path.basename(self.__file__, 'templates')
app.add_template_dir(path)

def load(app):
app.hook.register('post_setup', add_template_dir)

The above will append the directory /path/to/myplugin/templates to the list of template directories that the
applications output handler with search for template files.

3.9.11 Framework and Application Hooks

Hooks allow the developers to tie into different pieces of the application. A hook can be defined anywhere, be it
internally in the application, or in a plugin. Once a hook is defined, functions can be registered to that hook so that
when the hook is called, all functions registered to that hook will be run. By defining a hook, you are saying that you
are going to honor that hook somewhere in your application. Using descriptive hook names are good for clarity. For
example, pre_database_connect is obviously a hook that will be run before a database connection is attempted.

The most important thing to remember when defining hooks for your application is to properly document them. Include
whether anything is expected in return or what, if any, arguments will be passed to the hook functions when called.

API Reference:

• Cement Hook Module

Defining a Hook

A hook can be defined anywhere, however it is generally recommended to define the hook as early as possible. A
hook definition simply gives a label to the hook, and allows the developer (or third-party plugin developers) to register
functions to that hook. It’s label is arbitrary.

The most convenient way to define a hook is via CementApp.Meta.define_hooks:

3.9. Developer Documentation 165

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'
define_hooks = ['my_example_hook']

Alternatively, if you need more control you might do it in CementApp.setup():

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'

def setup(self):
always run core setup first
super(MyApp, self).setup()

define application hooks here
self.hook.define('my_example_hook')

Registering Functions to a Hook

A hook is just an identifier, but the functions registered to that hook are what get run when the hook is called. Regis-
tering a hook function should also be done early on in the bootstrap process, any time after the application has been
created, after the hook is defined, and before the hook is run. Note that every hook is different, and therefore should
be clearly documented by the ‘owner’ of the hook (application developer, plugin developer, etc).

The most convenient way to register a hook function is with CementApp.Meta.hooks:

from cement.core.foundation import CementApp

def my_hook1(app):
pass

def my_hook2(app):
pass

class MyApp(CementApp):
class Meta:

hooks = [
('post_argument_parsing', my_hook1),
('pre_close', my_hook2),
]

with MyApp() as app:
app.run()

Where CementApp.Meta.hooks is a list of tuples that define the hook label, and the function to register to that
hook.

Alternatively, if you need more control you might use:

from cement.core.foundation import CementApp

(continues on next page)

166 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

def my_hook1(app):
pass

with CementApp('myapp') as app:
app.hook.register('post_argument_parsing', my_hook1)
app.run()

Or, for a third-party plugin:

def my_hook1(app):
pass

def load(app):
app.hook.register('post_argument_parsing', my_hook1)

What you return depends on what the developer defining the hook is expecting. Each hook is different, and the nature
of the hook determines whether you need to return anything or not. That is up to the developer. Also, the args and
kwargs coming in depend on the developer. You have to be familiar with the purpose of the defined hook in order to
know whether you are receiving any args or kwargs.

Running a hook

Now that a hook is defined, and functions have been registered to that hook all that is left is to run it. Keep in mind,
you don’t want to run a hook until after the application load process. . . meaning, after all plugins and other code are
loaded. If you receive an error that the hook doesn’t exist, then you are trying to register a hook too soon before the
hook is defined. Likewise, if it doesn’t seem like your hook is running and you don’t see it mentioned in --debug
output, you might be registering your hook after the hook has already run.

That said, this is how you run a hook:

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
for res in app.hook.run('my_example_hook'):

do something with res?
pass

As you can see we iterate over the hook, rather than just calling app.hook.run() by itself. This is necessary
because app.hook.run() yields the results from each hook function as they are run. Hooks can be run anywhere
after the hook is defined, and hooks are registered to that hook.

Controlling Hook Run Order

Sometimes you might have a very specific purpose in mind for a hook, and need it to run before or after other functions
in the same hook. For that reason there is an optional weight parameter that can be passed when registering a hook
function.

The following is an example application that defines, registers, and runs a custom application hook:

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'

(continues on next page)

3.9. Developer Documentation 167

Cement Framework, Release 2.10.12

(continued from previous page)

def setup(self):
always run core setup
super(MyApp, self).setup()

define hooks in setup
self.hook.define('my_hook')

the following are the function that will run when ``my_hook`` is called
def func1(app):

print 'Inside hook func1'

def func2(app):
print 'Inside hook func2'

def func3(app):
print 'Inside hook func3'

with MyApp() as app:
register all hook functions *after* the hook is defined (setup) but
also *before* the hook is called (different for every hook)
app.hook.register('my_hook', func1, weight=0)
app.hook.register('my_hook', func2, weight=100)
app.hook.register('my_hook', func3, weight=-99)

run the application
app.run()

run our custom hook
for res in self.hook.run('my_hook', app):

pass

And the result is:

$ python my_hook_test.py
Inside hook func3
Inside hook func1
Inside hook func2

As you can see, it doesn’t matter what order we register the hook, the weight runs then in order from lowest to highest.

Cement Framework Hooks

Cement has a number of hooks that tie into the framework.

pre_setup

Run first when CementApp.setup() is called. The application object is passed as an argument. Nothing is
expected in return.

168 Chapter 3. Documentation

Cement Framework, Release 2.10.12

post_setup

Run last when CementApp.setup() is called. The application object is passed as an argument. Nothing is expected in
return.

pre_run

Run first when CementApp.run() is called. The application object is passed as an argument. Nothing is expected in
return.

post_run

Run last when CementApp.run() is called. The application object is passed as an argument. Nothing is expected in
return.

pre_argument_parsing

Run after CementApp.run() is called, just before argument parsing happens. The application object is passed as an
argument to these hook functions. Nothing is expected in return.

post_argument_parsing

Run after CementApp.run() is called, just after argument parsing happens. The application object is passed as an
argument to these hook functions. Nothing is expected in return.

This hook is generally useful where the developer needs to perform actions based on the arguments that were passed
at command line, but before the logic of app.run() happens.

pre_render

Run first when CementApp.render() is called. The application object, and data dictionary are passed as arguments.
Must return either the original data dictionary, or a modified one.

Note: This does not affect anything that is ‘printed’ to console.

post_render

Run last when CementApp.render() is called. The application object, and rendered output text are passed as arguments.
Must return either the original output text, or a modified version.

pre_close

Run first when app.close() is called. This hook should be used by plugins and extensions to do any ‘cleanup’ at the
end of program execution. Nothing is expected in return.

3.9. Developer Documentation 169

Cement Framework, Release 2.10.12

post_close

Run last when app.close() is called. Most use cases need pre_close(), however this hook is available should one need
to do anything after all other ‘close’ operations.

signal

Run when signal handling is enabled, and the defined signal handler callback is executed. This hook should be used by
the application, plugins, and extensions to perform any actions when a specific signal is caught. Nothing is expected
in return.

3.9.12 Extending CementApp

CementApp provides a convenient extend mechanism that allows plugins, extensions, or the app itself to add ob-
jects/functions to the global application object. For example, a plugin might extend the CementApp with an api
member allowing developers to call app.api.get(...). The application itself does not provide app.api how-
ever the plugin does. As plugins are often third party, it is not possible for the plugin developer to simply sub-class the
CementApp and add the functionality because the CementApp is already instantiated by the time plugins are loaded.

Take the following for example:

myapp.py

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
app.run()

The above is a very simple Cement application, which obviously doesn’t do much. That said, we can add a plugin that
extends the application to add an API client object, for example, pretty easily. Note the following is an arbitrary and
non-functional example using dRest:

/etc/myapp/plugins.d/api.conf

[api]
enable_plugin = true
endpoint = https://example.com/api/v1
user = john.doe
password = XXXXXXXXXXXX

/var/lib/myapp/plugins/api.py

import drest
from cement.core import hook

def extend_api_object(app):
get api info from this plugins configuration
endpoint = app.config.get('api', 'endpoint')
user = app.config.get('api', 'user')
password = app.config.get('api', 'password')

create an api object and authenticate
my_api_client = drest.API(endpoint)
my_api_client.auth(username, password)

(continues on next page)

170 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

extend the global app object with an ``api`` member
app.extend('api', my_api_client)

def load(app):
hook.register('pre_run', extend_api_object)

In the above plugin, we simply created a dRest API client within a pre_run hook and then extended the global app
with it. The developer can now reference app.api anywhere that the global app object is accessible.

Our application code could now look like:

myapp.py

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
app.run()

use the api object that the plugin provides
app.api.get(...)

3.9.13 Signal Handling

Python provides the Signal library allowing developers to catch Unix signals and set handlers for asynchronous events.
For example, the ‘SIGTERM’ (Terminate) signal is received when issuing a ‘kill’ command for a given Unix process.
Via the signal library, we can set a handler (function) callback that will be executed when that signal is received. Some
signals however can not be handled/caught, such as the SIGKILL signal (kill -9). Please refer to the Signal library
documentation for a full understanding of its use and capabilities.

A caveat when setting a signal handler is that only one handler can be defined for a given signal. Therefore, all
handling must be done from a single callback function. This is a slight roadblock for applications built on Cement in
that many pieces of the framework are broken out into independent extensions as well as applications that have 3rd
party plugins. The trouble happens when the application, plugins, and framework extensions all need to perform some
action when a signal is caught. This section outlines the recommended way of handling signals with Cement versus
manually setting signal handlers that may.

Important Note

It is important to note that it is not necessary to use the Cement mechanisms for signal handling, what-so-ever. That
said, the primary concern of the framework is that app.close() is called no matter what the situation. Therefore, if you
decide to disable signal handling all together you must ensure that you at the very least catch signal.SIGTERM and
signal.SIGINT with the ability to call app.close(). You will likely find that it is more complex than you might think.
The reason we put these mechanisms in place is primarily that we found it was the best way to a) handle a signal, and
b) have access to our ‘app’ object in order to be able to call ‘app.close()’ when a process is terminated.

Signals Caught by Default

By default Cement catches the signals SIGTERM and SIGINT. When these signals are caught, Cement raises the
exception ‘CaughtSignal(signum, frame)’ where ‘signum’ and ‘frame’ are the parameters passed to the signal handler.
By raising an exception, we are able to pass runtime back to our applications main process (within a try/except block)
and maintain the ability to access our ‘application’ object without using global objects.

A basic application using default handling might look like:

3.9. Developer Documentation 171

http://docs.python.org/library/signal.html
http://docs.python.org/library/signal.html

Cement Framework, Release 2.10.12

import signal
from cement.core.foundation import CementApp
from cement.core.exc import CaughtSignal

with CementApp('myapp') as app:
try:

app.run()
except CaughtSignal as e:

do something with e.signum or e.frame (passed from signal)
if e.signum == signal.SIGTERM:

print("Caught SIGTERM...")
elif e.signum == signal.SIGINT:

print("Caught SIGINT...")

The above provides a very simple means of handling the most common signals, which in turns allowes our application
to “exit clean” by running app.close() and any pre_close or post_close hooks. If we don’t catch the
signals, then the exceptions will be unhandled and the application will not exit clean.

Using The Signal Hook

An alternative way of adding multiple callbacks to a signal handler is by using the Cement signal hook. This hook is
called anytime a handled signal is encountered.

import signal
from cement.core.foundation import CementApp
from cement.core.exc import CaughtSignal

def my_signal_handler(app, signum, frame):
do something with app?
pass

or do someting with signum or frame
if signum == signal.SIGTERM:

print("Caught SIGTERM...")
elif signum == signal.SIGINT:

print("Caught SIGINT...")

with CementApp('myapp') as app:
hook.register('signal', my_signal_handler)

try:
app.run()

except CaughtSignal as e:
do soemthing with e.signum, e.frame
pass

The key thing to note here is that the main application itself can easily handle the CaughtSignal exception without
using hooks, however using the signal hook is useful for plugins and extensions to be able to tie into the signal
handling outside of the main application. Both serve the same purpose.

Regardless of how signals are handled, all extensions or plugins should use the pre_close hook for cleanup pur-
poses as much as possible as it is always run when app.close() is called.

Configuring Which Signals To Catch

You can define other signals to catch by passing a list of ‘catch_signals’ to foundation.CementApp():

172 Chapter 3. Documentation

Cement Framework, Release 2.10.12

import signal
from cement.core.foundation import CementApp

SIGNALS = [signal.SIGTERM, signal.SIGINT, signal.SIGHUP]

CementApp('myapp', catch_signals=SIGNALS)
...

What happens is, Cement iterates over the catch_signals list and adds a generic handler function (the same) for each
signal. Because the handler calls the cement ‘signal’ hook, and then raises an exception which both pass the ‘signum’
and ‘frame’ parameters, you are able to handle the logic elsewhere rather than assigning a unique callback function
for every signal.

What If I Don’t Like Your Signal Handler Callback?

If you want more control over what happens when a signal is caught, you are more than welcome to override the
default signal handler callback. That said, please be kind and be sure to atleast run the cement signal hook within
your callback.

The following is an example taken from the builtin callback handler. Note that there is a bit of hackery in how we are
acquiring the CementApp from the frame. This is because the signal is picked up outside of our control so we need
to find it.

import signal
from cement.core.foundation import CementApp

def cement_signal_handler(signum, frame):
"""
Catch a signal, run the ``signal`` hook, and then raise an exception
allowing the app to handle logic elsewhere.

:param signum: The signal number
:param frame: The signal frame.
:raises: cement.core.exc.CaughtSignal

"""
LOG.debug('Caught signal %s' % signum)

hackish, but we do not have direct access to the CementApp object
for f_global in frame.f_globals.values():

if isinstance(f_global, CementApp):
app = f_global
for res in app.hook.run('signal', app, signum, frame):

pass
raise exc.CaughtSignal(signum, frame)

with CementApp('myapp') as app:
try:

app.run()
except CaughtSignal as e:

do something with e.signum, or e.frame
pass

3.9. Developer Documentation 173

Cement Framework, Release 2.10.12

This Is Stupid, and UnPythonic - How Do I Disable It?

To each their own. If you simply do not want any kind of signal handling performed, just set
catch_signals=None.

from cement.core.foundation import foundation

CementApp('myapp', catch_signals=None)

3.9.14 Application Cleanup

The concept of ‘cleanup’ after application run time is nothing new. What happens during ‘cleanup’ all depends on the
application. This might mean closing and deleting temporary files, removing session data, or deleting a PID (Process
ID) file.

To allow for application cleanup not only within your program, but also external plugins and extensions, there is the
app.close() function that must be called after app.run() regardless of any exceptions or runtime errors.

For example:

from cement.core.foundation import CementApp

app = CementApp('helloworld')
app.setup()
app.run()
app.close()

Calling app.close() ensures that the pre_close and post_close framework hooks are run, allowing exten-
sions/plugins/etc to cleanup after the program runs.

Note that when using the Python with operator, the setup() and close() methods are automatically called. For
example, the following is exactly the same as the above example:

from cement.core.foundation import CementApp

with CementApp('helloworld') as app:
app.run()

Exit Status and Error Codes

You can optionally set the status code that your application exists with via the meta options cement.foundation.
CementApp.Meta.exit_on_close.

app = CementApp('helloworld', exit_on_close=True)
app.setup()
app.run()
app.close(27)

Or Alternatively:

class MyApp(CementApp):
class Meta:

label = 'helloworld'
exit_on_close = True

(continues on next page)

174 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

with MyApp() as app:
app.run()
app.exit_code = 123

Note the use of the exit_on_closemeta option. Cement will not call sys.exit() unless CementApp.Meta.
exit_on_close == True. You will find that calling sys.exit() in testing is very problematic, therefore you
will likely want to enable exit_on_close in production, but not for testing as in this example:

class MyApp(CementApp):
class Meta:

label = 'helloworld'
exit_on_close = True

class MyAppForTesting(MyApp):
class Meta:

exit_on_close = False

...

Also note that the default exit code is 0, however any uncaught exceptions will cause the application to exit with a
code of 1 (error).

Running Cleanup Code

Any extension, or plugin, or even the application itself that has ‘cleanup’ code should do so within the pre_close
or post_close hooks to ensure that it gets run. For example:

from cement.core import hook

def my_cleanup(app):
do something when app.close() is called
pass

hook.register('pre_close', my_cleanup)

3.9.15 Caching

Cement defines a cache interface called ICache, but does not implement caching by default. The documentation below
references usage based on the interface and not the full capabilities of any given implementation.

The following cache handlers are included and maintained with Cement:

• MemcachedCacheHandler

Please reference the ICache interface documentation for writing your own cache handler.

General Usage

For this example we use the Memcached extension, which requires the pylibmc library to be installed, as well as a
Memcached server running on localhost.

Example:

/path/to/myapp.conf

3.9. Developer Documentation 175

Cement Framework, Release 2.10.12

[myapp]
extensions = memcached

[cache.memcached]
comma separated list of hosts to use
hosts = 127.0.0.1

time in milliseconds
expire_time = 300

myapp.py

from cement.core.foundation import CementApp

with CementApp('myapp') as app:
run the application
app.run()

set a cached value
app.cache.set('my_key', 'my value')

get a cached value
app.cache.get('my_key')

delete a cached value
app.cache.delete('my_key')

delete the entire cache
app.cache.purge()

3.9.16 Sending Email Messages

Cement defines a mail interface called IMail, as well as the default DummyMailHandler that implements the interface.

Please note that there are other handlers that implement the IMail interface. The documentation below only refer-
ences usage based on the interface and not the full capabilities of the implementation.

The following mail handlers are included and maintained with Cement:

• DummyMailHandler (default)

• SMTPMailHandler

Please reference the IMail interface documentation for writing your own mail handler.

Example Usage

from cement.core.foundation import CementApp

class MyApp(CementApp):
class Meta:

label = 'myapp'

with MyApp() as app:
app.run()

(continues on next page)

176 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

send an email message
app.mail.send('This is my message',

subject='This is my subject',
to=['you@example.com'],
from_addr='me@example.com',
cc=['him@example.com', 'her@example.com'],
bcc=['boss@example.com']
)

Note that the default mail handler simply prints messages to the screen, and does not actually send anything. You can
override this pretty easily without changing any code by using the built-in SMTPMailHandler. Simply modify the
application configuration to something like:

myapp.conf

[myapp]
mail_handler = smtp

[mail.smtp]
ssl = 1
tls = 1
auth = 1
username = john.doe
password = oober_secure_password

3.9.17 Unit Testing Your Application

Testing is an incredibly important part of the application development process. The Cement framework provides
some simple helpers and shortcuts for executing basic tests of your application. Please note that cement.utils.test does
require the ‘nose’ package. That said, using cement.utils.test is not required to test a Cement based application. It is
merely here for convenience, and is used by Cement when performing its own Nose tests.

For more information on testing, please see the following:

• UnitTest

• Nose

• Coverage

API Reference:

• Cement Testing Utility

An Example Test Case

The following outlines a basic test case using the cement.utils.test module.

from cement.utils import test
from myapp.cli.main import MyApp

class MyTestCase(test.CementTestCase):
app_class = MyApp

def setUp(self):
super(MyTestCase, self).setUp()

(continues on next page)

3.9. Developer Documentation 177

http://docs.python.org/library/unittest.html
https://nose.readthedocs.io/en/latest/
http://nedbatchelder.com/code/coverage/

Cement Framework, Release 2.10.12

(continued from previous page)

Create a default application for the test functions to use.
Note that some tests may require you to perform this in the
test function in order to alter functionality. That's perfectly
fine, this is only here for convenience.
self.app = MyApp(argv=[], config_files=[])

def test_myapp(self):
with self.app as app:

Perform basic assertion checks. You can do this anywhere
in the test function, depending on what the assertion is
checking.
self.ok(app.config.has_key('myapp', 'debug'))
self.eq(app.config.get('myapp', 'debug'), False)

Run the applicaion, if necessary
app.run()

Test the last rendered output (if app.render was used)
data, output = app.get_last_rendered()
self.eq(data, {'foo':'bar'})
self.eq(output, 'some rendered output text')

@test.raises(Exception)
def test_exception(self):

try:
Perform tests that intentionally cause an exception. The
test passes only if the exception is raised.
raise Exception('test')

except Exception as e:
Do further checks to ensure the proper exception was raised
self.eq(e.args[0], 'Some Exception Message')

Finally, call raise again which re-raises the exception that
we just caught. This completes our test (to actually
verify that the exception was raised)
raise

Cement Testing Caveats

In general, testing Cement applications should be no different than testing anything else in Python. That said, the
following are some things to keep in mind.

Command Line Arguments

Never rely on sys.argv for command line arguments. The CementApp() class accepts the argv keyword argu-
ment allowing you to pass the arguments that you would like to test for. Using sys.argv will cause issues with the
calling script (i.e. nosetests, etc) and other issues. Always pass argv to CementApp() in tests.

Config Files

It is recommended to always set your apps config_files setting to an empty list, or to something relative to your
current working directory. Using default config files settings while testing will introduce unexpected results. For
example, if a ~/myapp.conf user configuration exists it can alter the runtime of your application in a way that
might cause tests to fail.

178 Chapter 3. Documentation

Cement Framework, Release 2.10.12

Making Things Easy

The easiest way to accomplish the above is by sub-classing your CementApp into a special ‘testing’ version. For
example:

from cement.utils import test
from myapp.cli.main import MyApp

class MyTestApp(MyApp):
class Meta:

argv = []
config_files = []

class MyTestCase(test.CementTestCase):
app_class = MyTestApp

def test_myapp_default(self):
with self.app as app:

app.run()

def test_myapp_foo(self):
with MyTestApp(argv=['--foo', 'bar']) as app:

app.run()

3.9.18 Application Design

Cement does not enforce any form of application layout, or design. That said, there are a number of best practices that
can help newcomers get settled into using Cement as a foundation to build their application.

Single File Scripts

Cement can easily be used for quick applications and scripts that are based out of a single file. The following is a
minimal example that creates a CementApp with several sub-commands:

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class BaseController(CementBaseController):
class Meta:

label = 'base'
description = "MyApp Does Amazing Things"
arguments = [

(['-f, '--foo'], dict(help='notorious foo option')),
(['-b', '--bar'], dict(help='infamous bar option')),
]

@expose(hide=True)
def default(self):

print("Inside MyAppBaseController.default()")

@expose(help="this is some help text about the cmd1")
def cmd1(self):

print("Inside BaseController.cmd1()")

(continues on next page)

3.9. Developer Documentation 179

Cement Framework, Release 2.10.12

(continued from previous page)

@expose(help="this is some help text about the cmd2")
def cmd2(self):

print("Inside BaseController.cmd2()")

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = BaseController

def main():
with MyApp() as app:

app.run()

if __name__ == '__main__':
main()

In this example, we’ve defined a base controller to handler the heavy lifting of what this script does, while providing
sub-commands to handler different tasks. We’ve also included a number of command line arguments/options that can
be used to alter how the script operates, and to allow user input.

Notice that we have defined a main() function, and then beyond that where we call main() if __name__ is
__main__. This essentially says, if the script was called directly (not imported by another Python library) then
execute the main() function.

Multi-File Applications

Larger applications need to be properly organized to keep code clean, and to keep a high level of maintainability (read:
to keep things from getting shitty). The Boss Project provides our recommended application layout, and is a great
starting point for anyone new to Cement.

The primary detail about how to layout your code is this: All CLI/Cement related code should live separate from the
“core logic” of your application. Most likely, you will have some code that is re-usable by other people and you do
not want to mix this with your Cement code, because that will rely on Cement being loaded to function properly (like
it is when called from command line).

For this reason, we recommend a structure similar to the following:

- myapp/
- myapp/cli
- myapp/core

All code related to your CLI, which relies on Cement, should live in myapp/cli/, and all code that is the “core
logic” of your application should live in a module like myapp/core. The idea being that, should anyone wish to
re-use your library, they should not be required to run your CLI application to do so. You want people to be able to do
the following:

from yourapp.core.some_library import SomeClass

The SomeClass should not rely on CementApp (i.e. the app object). In this case, the code under myapp/cli/
would import from myapp/core/ and add the “CLI” stuff on top of it.

In short, the CLI code should handle interaction with the user via the shell, and the core code should handle application
logic un-reliant on the CLI being loaded.

See the Starting Projects from Boss Templates section for more info on using Boss.

180 Chapter 3. Documentation

https://boss.readthedocs.io

Cement Framework, Release 2.10.12

Handling High Level Exceptions

The following expands on the above to give an example of how you might handle exceptions at the highest level
(wrapped around the app object). It is very well known that exception handling should happen as close to the source
of the exception as possible, and you should do that. However at the top level (generally in your main.py or similar)
you want to handle certain exceptions (such as argument errors, or user interaction related errors) so that they are
presented nicely to the user. End-users don’t like stack traces!

The below example catches common framework exceptions that Cement might throw, but you could also catch your
own application specific exception this way:

import sys

from cement.core.foundation import CementApp
from cement.core.exc import FrameworkError, CaughtSignal

def main():
with CementApp('myapp') as app:

try:
app.run()

except CaughtSignal as e:
determine what the signal is, and do something with it?
from signal import SIGINT, SIGABRT

if e.signum == SIGINT:
do something... maybe change the exit code?
app.exit_code = 110

elif e.signum == SIGABRT:
do something else...
app.exit_code = 111

except FrameworkError as e:
do something when a framework error happens
print("FrameworkError => %s" % e)

and maybe set the exit code to something unique as well
app.exit_code = 300

finally:
Maybe we want to see a full-stack trace for the above
exceptions, but only if --debug was passed?
if app.debug:

import traceback
traceback.print_exc()

if __name__ == '__main__':
main()

3.9.19 Starting Projects from Boss Templates

The Boss Project provides ‘Baseline Open Source Software’ templates and development tools. It has similarities to
PasteScript with regards to templating, but far easier to extend. The official template repository includes a number of
templates specifically for Cement, and are the recommended means of start Cement based projects.

This is just a quick overview of creating Cement Apps, Plugins, and Extensions with Boss.

3.9. Developer Documentation 181

https://boss.readthedocs.io

Cement Framework, Release 2.10.12

Creating a Cement App

$ boss create ./myapp -t boss:cement-app

$ cd myapp

$ virtualenv /path/to/myapp/env

$ source /path/to/myapp/env/bin/activate

$ pip install -r requirements.txt

$ python setup.py develop

$ myapp --help

$ pip install nose coverage

$ python setup.py nosetests

Creating a Cement Plugin

$ source /path/to/myapp/env/bin/activate

$ cd /path/to/myapp

$ mkdir plugins

$ boss create ./plugins/myplugin -t boss:cement-plugin

Add the following to ~/myapp.conf (or whereever your config file is):

[myapp]
plugin_config_dir = /path/to/myapp/config/plugins.d
plugin_dir = /path/to/myapp/plugins

Enable the plugin here, or in a plugins.d/myplugin.conf
[myplugin]
enable_plugin = 1

And it should be enabled when you run your app (though it doesn’t do anything out of the box).

Creating a Cement Extension

3rd party extensions are generally created within the app they are being built with, but do not have to be. In this case
we are adding the extension to an existing Cement project:

$ boss create ./myapp -t boss:cement-ext

At this point you would enable the extension in your app to utilize it.

182 Chapter 3. Documentation

Cement Framework, Release 2.10.12

3.9.20 Contributing

Cement is an open-source project, and is open to any and all contributions that other developers would like to provide.
This document provides some guidelines that all contributors must be aware of, and abide by to have their submissions
included in the source.

Licensing

The Cement source code is licensed under the BSD three-clause license and is approved by the Open Source Initiative.
All contributed source code must be either the original work of the contributing author, which will be contributed
under the BSD license, or work taken from another project that is released under a BSD-compatible license.

Submitting Bug Reports and Feature Requests

If you’ve found a bug, or would like to request a feature please create a detailed issue for it at http://github.com/
datafolklabs/cement/issues.

The ideal bug report would include:

• Bug description

• Include the version of Python, Cement, and any dependencies in use

• Steps to reproduce the bug

• Code samples that show the bug in action

• A pull request including code that a) fixes the bug, and b) atleast one test case that tests for the bug specifically

The ideal feature request would include:

• Feature description

• Example code, or pseudo code of how you might use the feature

• Example command line session showing how the feature would be used by the end-user

• A pull request including:

– The feature you would like added

– At least one test case that tests the feature and maintains 100% code coverage when tests are run
(meaning that your tests should cover 100% of your contributed code)

– Documentation that outlines how to use the feature

Guidelines for Code Contributions

All contributors should attempt to abide by the following:

• Contributors fork the project on GitHub onto their own account

• All changes should be commited, and pushed to their repository

• All pull requests are from a topic branch, not an existing Cement branch

• Contributors make every effort to comply with PEP8

• Before starting on a new feature, or bug fix, always do the following:

– git pull --rebase to get latest changes from upstream

3.9. Developer Documentation 183

http://www.opensource.org
http://github.com/datafolklabs/cement/issues
http://github.com/datafolklabs/cement/issues
http://www.python.org/dev/peps/pep-0008/

Cement Framework, Release 2.10.12

– Checkout a new branch. For example:

* git checkout -b feature/<feature_name>

* git checkout -b bug/<bug_number>

• Code must include the following:

– All tests pass successfully

– Coverage reports 100% code coverage when running tests

– New features are documented in the appropriate section of the doc

– Significant changes are mentioned in the ChangeLog

• All contributions must be associated with at least one issue in GitHub. If the issue does not exist, create one (per
the guidelines above).

• Commit comments must include something like the following:

– Resolves Issue #1127

– Partially Resolves Issue #9873

• A single commit per issue.

• Contributors should add their full name, or handle, to the CONTRIBUTORS file.

Regarding git commit messages, please read the following:

• Commit Guidelines

The majority of commits only require a single line commit message. That said, for more complex commits, please use
the following as an example (as outlined in the ProGit link above):

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body. The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded by a
single space, with blank lines in between, but conventions vary here

Source Code and Versioning

One of the primary goals of Cement is stability in the source code. For this reason we maintain a number of different
git branches for focused development.

Development Branches

Active ‘forward’ development happens out of two branches:

• master - Development for the next minor stable release.

• portland - Development for the next major release.

184 Chapter 3. Documentation

http://git-scm.com/book/en/Distributed-Git-Contributing-to-a-Project#Commit-Guidelines

Cement Framework, Release 2.10.12

Additionally, specific development branches might exist in the future for larger releases that may require iterative
‘release candidate’ handling before an official stable release. These branches will have the format of:

• dev/3.1.x

• dev/3.3.x

• dev/4.1.x

• dev/4.3.x

• etc

Stable Branches

• stable/0.8.x

• stable/1.0.x

• stable/1.2.x

• stable/2.0.x

• stable/2.2.x

• stable/3.0.x

• stable/3.2.x

• etc

There is a system for versioning that may seem complex, and needs some explanation. Version numbers are broken
up into three parts:

• <Major>.<Minor>.<Bugfix>

This means:

• Major - The major version of the source code generally relates to extensive incompatible changes, or entire code
base rewrites. Applications built on the ‘1.x.x’ version of Cement will need to be completely rewritten for the
‘2.x.x’ versions of Cement.

• Minor - The minor version signifies the addition of new features. It may also indicate minor incompatibilities
with the previous stable version, but should be easily resolvable with minimal coding effort.

• Bugfix - During the lifecycle of a stable release such as ‘2.2.x’, the only updates should be bug and/or security
related. At times, minor features may be introduced during a ‘bugfix’ release but that should not happen often.

It should be noted that both the Minor, and Bugfix versions follow a even == stable, and odd ==
development scheme. Therefore, the current version in git will always end in an ‘odd number’. For example,
if the current stable version is 2.0.18, then the version in stable/2.0.x would be 2.0.19. That said, the
master branch might then be 2.1.1 which is the first version of the next minor release. Bugfixes would get applied
to both branches, however feature updates would only be applied to master. The next stable release would then be
2.2.0 and a new git branch of stable/2.2.x will be created.

The portland branch is always very forward looking, and will contain significant (and likely broken) code changes.
It should never be used for anything other than development and testing.

3.10 Examples

The following are examples that demonstrate how to handle certain situations with Cement.

3.10. Examples 185

Cement Framework, Release 2.10.12

3.10.1 Adding a Version Option to Your App

Almost every app out there supports a --version option of some sort that provides the end user with version
information. This is pretty important to include, so we’ve added an example below.

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController

VERSION = '0.9.1'

BANNER = """
My Awesome Application v%s
Copyright (c) 2014 John Doe Enterprises
""" % VERSION

class MyBaseController(CementBaseController):
class Meta:

label = 'base'
description = 'MyApp Does Amazing Things'
arguments = [

(['-v', '--version'], dict(action='version', version=BANNER)),
]

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = MyBaseController

with MyApp() as app:
app.run()

This looks like:

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

MyApp Does Amazing Things

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
-v, --version show program's version number and exit

$ python myapp.py --version
My Awesome Application v0.9.1
Copyright (c) 2014 John Doe Enterprises

3.10.2 Multiple Stacked Controllers

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

define application controllers
class MyAppBaseController(CementBaseController):

(continues on next page)

186 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

class Meta:
label = 'base'
description = "my application does amazing things"
arguments = [

(['--base-opt'], dict(help="option under base controller")),
]

@expose(help="base controller default command", hide=True)
def default(self):

print "Inside MyAppBaseController.default()"

@expose(help="another base controller command")
def command1(self):

print "Inside MyAppBaseController.command1()"

class SecondController(CementBaseController):
class Meta:

label = 'second_controller'
stacked_on = 'base'
stacked_type = 'nested'
description = "this is the second controller (stacked/nested on base)"
arguments = [

(['--2nd-opt'], dict(help="another option under base controller")),
]

@expose(help="second-controller default command", hide=True)
def default(self):

print "Inside SecondController.default()"

@expose(help="this is a command under the second-controller namespace")
def command2(self):

print "Inside SecondController.command2()"

class ThirdController(CementBaseController):
class Meta:

label = 'third_controller'
stacked_on = 'second_controller'
stacked_type = 'embedded'
description = "this controller is embedded in the second-controller"
arguments = [

(['--3rd-opt'], dict(help="an option only under 3rd controller")),
]

@expose(help="another command under the second-controller namespace")
def command3(self):

print "Inside ThirdController.command3()"

class FourthController(CementBaseController):
class Meta:

label = 'fourth_controller'
stacked_on = 'second_controller'
stacked_type = 'nested'
description = "this controller is nested on the second-controller"
arguments = [

(['--4th-opt'], dict(help="an option only under 3rd controller")),
]

(continues on next page)

3.10. Examples 187

Cement Framework, Release 2.10.12

(continued from previous page)

@expose(help="a command only under the fourth-controller namespace")
def command4(self):

print "Inside FourthController.command4()"

class MyApp(CementApp):
class Meta:

label = 'myapp'
handlers = [

MyAppBaseController,
SecondController,
ThirdController,
FourthController,
]

def main():
with MyApp() as app:

app.run()

if __name__ == '__main__':
main()

In the base controller output of –help notice that the second-controller is listed as a sub-command:

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

my application does amazing things

commands:

command1
another base controller command

second-controller
this is the second controller (stacked/nested on base)

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
--base-opt BASE_OPT option under base controller

$ python myapp.py
Inside MyAppBaseController.default()

$ python myapp.py command1
Inside MyAppBaseController.command1()

$ python myapp.py second-controller
Inside SecondController.default()

$ python myapp.py second-controller --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

(continues on next page)

188 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

this is the second controller (stacked/nested on base)

commands:

command2
this is a command under the second-controller namespace

command3
another command under the second-controller namespace

fourth-controller
this controller is nested on the second-controller

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
--2nd-opt 2ND_OPT another option under base controller
--3rd-opt 3RD_OPT an option only under 3rd controller

Under the second-controller you can see the commands and options from the second and third controllers. In this
example, the second-controller is nested on the base controller, and the third-controller is embedded on the second-
controller. Finally, we see that the fourth-controller is also nested on the second-controller creating a sub-sub-
command.

$ python myapp.py second-controller command3
Inside ThirdController.command3()

$ python myapp.py second-controller fourth-controller --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

this controller is nested on the second-controller

commands:

command4
a command only under the fourth-controller namespace

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output
--4th-opt 4TH_OPT an option only under 3rd controller

$ python myapp.py second-controller fourth-controller command4
Inside FourthController.command4()

3.10.3 Abstract Base Controllers for Shared Arguments and Commands

For larger, complex applications it is often very useful to have abstract base controllers that hold shared arguments and
commands that a number of other controllers have in common. Note that in the example below, you can not override
the Meta.arguments in a sub-class or you overwrite the shared arguments, but it is possible to append to them in order
to maintain the defaults while having unique options/arguments for the sub-classed controller. As well, you can add

3.10. Examples 189

Cement Framework, Release 2.10.12

any number of additional commands in the sub-class but still maintain the existing shared commands (or override them
as necessary).

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class AbstractBaseController(CementBaseController):
"""
This is an abstract base class that is useless on its own, but used
by other classes to sub-class from and to share common commands and
arguments. This should not be confused with the `MyAppBaseController`
used as the ``base_controller`` namespace.

"""
class Meta:

stacked_on = 'base'
stacked_type = 'nested'
arguments = [

(['-f', '--foo'], dict(help='notorious foo option')),
]

def _setup(self, base_app):
super(AbstractBaseController, self)._setup(base_app)

add a common object that will be used in any sub-class
self.reusable_dict = dict()

@expose(hide=True)
def default(self):

"""
This command will be shared within all controllers that sub-class
from here. It can also be overridden in the sub-class, but for
this example we are making it dynamic.

"""
do something with self.my_shared_obj here?
if 'some_key' in self.reusable_dict.keys():

pass

or do something with parsed args?
if self.app.pargs.foo:

print "Foo option was passed with value: %s" % self.app.pargs.foo

or maybe do something dynamically
print("Inside %s.default()" % self.__class__.__name__)

class MyAppBaseController(CementBaseController):
"""
This is the application base controller, but we don't want to use our
abstract base class here.

"""
class Meta:

label = 'base'

@expose(hide=True)
def default(self):

(continues on next page)

190 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

print("Inside MyAppBaseController.default()")

class Controller1(AbstractBaseController):
"""
This controller sub-classes from the abstract base class as to inherite
shared arguments, and commands.

"""
class Meta:

label = 'controller1'

@expose()
def command1(self):

print("Inside Controller1.command1()")

class Controller2(AbstractBaseController):
"""
This controller also sub-classes from the abstract base class as to
inherite shared arguments, and commands.

"""
class Meta:

label = 'controller2'

@expose()
def command2(self):

print("Inside Controller2.command2()")

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = 'base'
handlers = [

MyAppBaseController,
Controller1,
Controller2,
]

def main():
with MyApp() as app:

app.run()

if __name__ == '__main__':
main()

And:

$ python myapp.py
Inside MyAppBaseController.default()

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

Base Controller

commands:
(continues on next page)

3.10. Examples 191

Cement Framework, Release 2.10.12

(continued from previous page)

controller1
Controller1 Controller

controller2
Controller2 Controller

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output

$ python myapp.py controller1
Inside Controller1.default()

$ python myapp.py controller1 --foo=bar
Foo option was passed with value: bar
Inside Controller1.default()

$ python myapp.py controller2
Inside Controller2.default()

3.10.4 Multiple Controllers With Same Label

There are many ways to use controllers. In some circumstances you might find that you want to have two controllers
with the same label but stacked on different parent controllers. This is a problem because controller labels must be
unique.

Take for example the situation where you want to have a ‘list’ controller, rather than a ‘list’ function of another
controller. You might call this as:

$ myapp <controller1> <list_controller>

$ myapp <controller2> <some_other_list_controller>

In both cases, you would probably want the ‘sub-controller’ or sub-command to be ‘list’. This is possible with the use
of the ‘aliases’ and ‘aliases_only’ Meta options. Take the following code as an example where we have a ‘users’ and
a ‘hosts’ controller and we want to have a ‘list’ sub-command under both:

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

define application controllers
class MyAppBaseController(CementBaseController):

class Meta:
label = 'base'

class UsersController(CementBaseController):
class Meta:

label = 'users'
description = "this is the users controller"
stacked_on = 'base'
stacked_type = 'nested'

(continues on next page)

192 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

class HostsController(CementBaseController):
class Meta:

label = 'hosts'
description = "this is the hosts controller"
stacked_on = 'base'
stacked_type = 'nested'

class UsersListController(CementBaseController):
class Meta:

label = 'users_list'
description = 'list all available users'
aliases = ['list']
aliases_only = True
stacked_on = 'users'
stacked_type = 'nested'

@expose(hide=True)
def default(self):

print "Inside UsersListController.default()"

class HostsListController(CementBaseController):
class Meta:

label = 'hosts_list'
description = 'list all available hosts'
aliases = ['list']
aliases_only = True
stacked_on = 'hosts'
stacked_type = 'nested'

@expose(hide=True)
def default(self):

print "Inside HostsListController.default()"

class MyApp(CementApp):
class Meta:

label = 'myapp'
handlers = [

MyAppBaseController,
UsersController,
HostsController,
UsersListController,
HostsListController,
]

def main():
with MyApp() as app:

app.run()

if __name__ == '__main__':
main()

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

Base Controller

(continues on next page)

3.10. Examples 193

Cement Framework, Release 2.10.12

(continued from previous page)

commands:

hosts
this is the hosts controller

users
this is the users controller

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output

$ python myapp.py users --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

this is the users controller

commands:

list
list all available users

optional arguments:
-h, --help show this help message and exit
--debug toggle debug output
--quiet suppress all output

$ python myapp.py users list
Inside UsersListController.default()

$ python myapp.py hosts list
Inside HostsListController.default()

3.10.5 BASH Auto Completion

Auto Completion, or “TAB Completion” is a very common and familiar feature in BASH (and other modern shells). It
is possible to auto-complete Cement apps (using BASH for this example) including sub-levels for nested controllers.
The difficulty is that this auto-completion code must be maintained outside of Cement and your application code, and
be implemented in the shell environment generally by use of an “RC” file, or similar means. This then must be updated
anytime your application is modified (or atleast any time the sub-commands/controllers/arguments are modified).

Note that, in the future, we would love to include some form of “BASH RC Generator” that will do this for you,
however in the meantime the following is a working example that can be used as a model for adding BASH auto-
completion to your app.

Update: As of Cement 2.7.x, the Argcomplete Framework Extension can be used as an alternative to this example.
Both are viable options though this route is much more manual, and the Argcomplete route might not fit your needs.

Example Cement App

The following application code implements three levels of namespaces, or sub-commands, that are implemented via
nested-controllers.

194 Chapter 3. Documentation

Cement Framework, Release 2.10.12

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class BaseController(CementBaseController):
class Meta:

label = 'base'

@expose()
def base_cmd1(self):

print("Inside BaseController.base_cmd1()")

class EmbeddedController(CementBaseController):
class Meta:

label = 'embedded'
description = "embedded with base namespace"
stacked_on = 'base'
stacked_type = 'embedded'

@expose()
def base_cmd2(self):

print("Inside EmbeddedController.base_cmd2()")

@expose()
def embedded_cmd3(self):

print("Inside EmbeddedController.embedded_cmd3()")

class SecondLevelController(CementBaseController):
class Meta:

label = 'second'
description = ''
stacked_on = 'base'
stacked_type = 'nested'

@expose()
def second_cmd4(self):

print("Inside SecondLevelController.second_cmd4()")

@expose()
def second_cmd5(self):

print("Inside SecondLevelController.second_cmd5()")

class ThirdLevelController(CementBaseController):
class Meta:

label = 'third'
description = ''
stacked_on = 'second'
stacked_type = 'nested'

@expose()
def third_cmd6(self):

print("Inside ThirdLevelController.third_cmd6()")

@expose()
def third_cmd7(self):

print("Inside ThirdLevelController.third_cmd7()")

(continues on next page)

3.10. Examples 195

Cement Framework, Release 2.10.12

(continued from previous page)

class MyApp(CementApp):
class Meta:

label = 'myapp'
handlers = [

BaseController,
EmbeddedController,
SecondLevelController,
ThirdLevelController,
]

def main():
with MyApp() as app:

app.run()

if __name__ == '__main__':
main()

This looks like:

$ python myapp.py --help
usage: myapp.py (sub-commands ...) [options ...] {arguments ...}

Base Controller

commands:

base-cmd1

base-cmd2

embedded-cmd3

second

$ python myapp.py second --help

commands:

second-cmd4

second-cmd5

third

$ python myapp.py second third --help

commands:

third-cmd6

third-cmd7

For demonstration purposes, we are going to create a BASH alias here so that we can call our myapp command name
as if we would in production (not development):

196 Chapter 3. Documentation

Cement Framework, Release 2.10.12

$ alias myapp="python ./myapp.py"

In the “real world” your actual myapp command would be setup/installed by something like this in setup.py:

entry_points="""
[console_scripts]
myapp = myapp.cli.main:main
""",

Or by simply copying myapp.py to /usr/bin/myapp, or similar.

Example BASH RC

The following is a BASH RC script that will setup auto-completiong for the above Cement App myapp. You will need
to modify this, it is just an example and is not intended to be copy and pasted:

alias myapp="python ./myapp.py"

_myapp_complete()
{

local cur prev BASE_LEVEL

COMPREPLY=()
cur=${COMP_WORDS[COMP_CWORD]}
prev=${COMP_WORDS[COMP_CWORD-1]}

SETUP THE BASE LEVEL (everything after "myapp")
if [$COMP_CWORD -eq 1]; then

COMPREPLY=($(compgen \
-W "base-cmd1 base-cmd2 embedded-cmd3 second" \
-- $cur))

SETUP THE SECOND LEVEL (EVERYTHING AFTER "myapp second")
elif [$COMP_CWORD -eq 2]; then

case "$prev" in

HANDLE EVERYTHING AFTER THE SECOND LEVEL NAMESPACE
"second")

COMPREPLY=($(compgen \
-W "second-cmd4 second-cmd5 third" \
-- $cur))

;;

IF YOU HAD ANOTHER CONTROLLER, YOU'D HANDLE THAT HERE
"some-other-controller")

COMPREPLY=($(compgen \
-W "some-other-sub-command" \
-- $cur))

;;

EVERYTHING ELSE

*)
;;

esac

(continues on next page)

3.10. Examples 197

Cement Framework, Release 2.10.12

(continued from previous page)

SETUP THE THIRD LEVEL (EVERYTHING AFTER "myapp second third")
elif [$COMP_CWORD -eq 3]; then

case "$prev" in
HANDLE EVERYTHING AFTER THE THIRD LEVEL NAMESPACE
"third")

COMPREPLY=($(compgen \
-W "third-cmd6 third-cmd7" \
-- $cur))

;;

IF YOU HAD ANOTHER CONTROLLER, YOU'D HANDLE THAT HERE
"some-other-controller")

COMPREPLY=($(compgen \
-W "some-other-sub-command" \
-- $cur))

;;

*)
;;

esac
fi

return 0

} &&
complete -F _myapp_complete myapp

You would then “source” the RC file:

$ source myapp.rc

In the “real world” you would probably put this in a system wide location such at /etc/profile.d or similar (in
a production deployment).

Finally, this is what it looks like:

show all sub-commands at the base level
$ myapp [tab] [tab]
base-cmd1 base-cmd2 embedded-cmd3 second

auto-complete a partial matching sub-command
$ myapp base [tab]

$ myapp base-cmd [tab] [tab]
base-cmd1 base-cmd2

auto-complete a full matching sub-command
$ myapp sec [tab]

$ myapp second

show all sub-commands under the second namespace
$ myapp second [tab] [tab]
second-cmd4 second-cmd5 third

show all sub-commands under the third namespace
$ myapp second third [tab] [tab]

(continues on next page)

198 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

third-cmd6 third-cmd7

3.10.6 Handling Arbitrary Extra Positional Arguments

It is common practice to accept additional positional arguments at command line, rather than option flags. For example:

$ myapp some-command some-argument --foo=bar

In the above, some-command would be the function under whatever controller it is exposed from, and some-
argument would be just an arbtrary argument. In most cases, the argument within the code is generic, but its uses
vary. For example:

$ myapp create-user john.doe

$ myapp create-group admins

In the above, the sub-commands are create-user and create-group, and in this use case they are under the
same controller. The argument however differs for each command, though it is passed to the app the same (the first
positional argument, that is not a controller/command).

The following example outlines how you might handle arbitrary (or generic) positional arguments.

Example

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

class MyBaseController(CementBaseController):
class Meta:

label = 'base'

class MySecondController(CementBaseController):
class Meta:

label = 'second'
stacked_type = 'nested'
stacked_on = 'base'
description = 'this is the second controller namespace'
arguments = [

(['-f', '--foo'],
dict(help='the notorious foo option', action='store')),

(['extra_arguments'],
dict(action='store', nargs='*')),

]

@expose()
def cmd1(self):

print "Inside MySecondController.cmd1()"

if self.app.pargs.extra_arguments:
print "Extra Argument 0: %s" % self.app.pargs.extra_arguments[0]
print "Extra Argument 1: %s" % self.app.pargs.extra_arguments[1]

(continues on next page)

3.10. Examples 199

Cement Framework, Release 2.10.12

(continued from previous page)

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = 'base'
handlers = [

MyBaseController,
MySecondController,
]

def main():
with MyApp() as app:

app.run()

if __name__ == '__main__':
main()

And this would look something like:

$ python argtest.py second cmd1 extra1 extra2
Inside MySecondController.cmd1()
Extra Argument 0: extra1
Extra Argument 1: extra2

3.10.7 Auto Reload When Configuration Files Change

Cement 2.5.2 added the experimental Reload Config Extension, allowing applications built on Cement to automati-
cally reload app.config any time configuration files and/or plugin configuration files are modified. Note that the
ext_reload_config extension requires pyinotify and is only supported on Linux.

Additionally, the extension adds the pre_reload_config and post_reload_config hooks allowing appli-
cations to respond to the event and perform actions when config changes are detected.

The following demonstrates how this can be accomplished:

from time import sleep
from cement.core.exc import CaughtSignal
from cement.core import hook
from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose

def print_foo(app):
print("Foo => %s" % app.config.get('myapp', 'foo'))

class Base(CementBaseController):
class Meta:

label = 'base'

@expose(hide=True)
def default(self):

print('Inside Base.default()')

simulate a long running process
while True:

sleep(30)

(continues on next page)

200 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['reload_config']
hooks = [('post_reload_config', print_foo)]
handlers = [Base]

with MyApp() as app:
try:

app.run()
except CaughtSignal as e:

maybe do something... but catch it regardless so app.close() is
called when exiting `with` cleanly.
print(e)

The output looks something like:

$ python myapp.py --debug

Inside Base.default()

2015-05-12 19:05:34,372 (DEBUG) cement.ext.ext_reload_config : config path modified:
→˓mask=IN_CLOSE_WRITE, path=/home/vagrant/.myapp.conf
2015-05-12 19:05:34,373 (DEBUG) cement.core.config : config file '/home/vagrant/.
→˓myapp.conf' exists, loading settings...
2015-05-12 19:05:34,373 (DEBUG) cement.core.hook : running hook 'post_reload_config' (
→˓<function print_foo at 0x7f6b4d401b70>) from __main__
Foo => bar1

2015-05-12 19:05:44,121 (DEBUG) cement.ext.ext_reload_config : config path modified:
→˓mask=IN_CLOSE_WRITE, path=/home/vagrant/.myapp.conf
2015-05-12 19:05:44,122 (DEBUG) cement.core.config : config file '/home/vagrant/.
→˓myapp.conf' exists, loading settings...
2015-05-12 19:05:44,122 (DEBUG) cement.core.hook : running hook 'post_reload_config' (
→˓<function print_foo at 0x7f6b4d401b70>) from __main__
Foo => bar2

3.10.8 Tabularized Output

Users familiar with MySQL, PGSQL, etc find comfort in table-based output patterns. For one it adds structure, and
two generally makes things much more readable. The folloiwing is an example of a simple app using the Tabulate
extension:

from cement.core.foundation import CementApp
from cement.core.controller import expose, CementBaseController

class MyController(CementBaseController):
class Meta:

label = 'base'

@expose(hide=True)
def default(self):

(continues on next page)

3.10. Examples 201

Cement Framework, Release 2.10.12

(continued from previous page)

headers=['NAME', 'AGE', 'ADDRESS']
data=[

["Krystin Bartoletti", 47, "PSC 7591, Box 425, APO AP 68379"],
["Cris Hegan", 54, "322 Reubin Islands, Leylabury, NC 34388"],
["George Champlin", 25, "Unit 6559, Box 124, DPO AA 25518"],
]

self.app.render(data, headers=headers)

class MyApp(CementApp):
class Meta:

label = 'myapp'
extensions = ['tabulate']
output_handler = 'tabulate'
handlers = [MyController]

with MyApp() as app:
app.run()

The output looks like:

$ python myapp.py

| NAME | AGE | ADDRESS |
|--------------------+-------+---|
Krystin Bartoletti	47	PSC 7591, Box 425, APO AP 68379
Cris Hegan	54	322 Reubin Islands, Leylabury, NC 34388
George Champlin	25	Unit 6559, Box 124, DPO AA 25518

3.10.9 Reload Application on SIGHUP

A common convention in the Linux world is to handle a SIGHUP signal, by reloading the current runtime within the
same process ID (pid). The following example demonstrates how you might achieve that:

import signal
from time import sleep
from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose
from cement.core.exc import CaughtSignal

class MyController(CementBaseController):
class Meta:

label = 'base'

@expose(hide=True)
def default(self):

print('Inside MyController.default()')

inner loop where the application logic happens
while True:

print('Inside Inner Loop')
sleep(5)

(continues on next page)

202 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

class MyApp(CementApp):
class Meta:

label = 'myapp'
base_controller = MyController

with MyApp() as app:
outer loop where signals are handles, and application reload
happens

keep_alive = True
while keep_alive is True:

try:
app.run()

except CaughtSignal as e:
app.log.warning(e.msg)
if e.signum in [signal.SIGHUP]:

app.log.warning('Reloading MyApp')
app.reload()
keep_alive = True

else:
app.exit_code = 1
keep_alive = False

Running the application shows the inner loop in action:

$ python myapp.py
Inside MyController.default()
Inside Inner Loop
Inside Inner Loop
Inside Inner Loop
Inside Inner Loop
Inside Inner Loop
Inside Inner Loop
Inside Inner Loop

If we grab the PID in another terminal, and send it a SIGHUP signal we can see it reload:

$ ps auxw | grep [m]yapp
derks 1317 0.0 0.1 2425792 12988 s001 S+ 10:03PM 0:00.11 python
→˓myapp.py

In the original terminal (running our app) we see that the app reloads and the inner loop continues:

Caught signal 1
WARNING: Reloading myapp
Inside MyController.default()
Inside Inner Loop
Inside Inner Loop

However, the PID remains the same:

$ ps auxw | grep [m]yapp
derks 1317 0.0 0.1 2425792 13012 s001 S+ 10:03PM 0:00.11 python
→˓myapp.py

If you’d like to see even more detail on what Cement is doing during the reload try adding --debug.

3.10. Examples 203

Cement Framework, Release 2.10.12

3.10.10 Managing Multiple Environments

Many applications and use-cases call for managing multiple environments and handling common settings between
them. These environments might refer to infrastructure such as production, staging, or dev. . . or perhaps it
might be to handle multiple accounts or regions within an account at a service provider.

The following example outlines one possible approach to managing multiple infrastructure accounts from an applica-
tion Built on Cement:

myapp.py:

from cement.core.foundation import CementApp
from cement.core.controller import CementBaseController, expose
from cement.utils.misc import init_defaults

set default settings for our different environments
defaults = init_defaults('myapp', 'env.production', 'env.staging', 'env.dev')
defaults['myapp']['default_env'] = 'production'
defaults['env.production']['foo'] = 'bar.production'
defaults['env.staging']['foo'] = 'bar.staging'
defaults['env.dev']['foo'] = 'bar.dev'

do this in a hook so that we can load the default from config
def set_default_env(app):

if app.pargs.env is None:
app.pargs.env = app.config.get('myapp', 'default_env')

class MyController(CementBaseController):
class Meta:

label = 'base'
arguments = [

(['-E', '--environment'],
dict(help='environment override',

action='store',
nargs='?',
choices=['production', 'staging', 'dev'],
dest='env')),

]

@expose(hide=True)
def default(self):

print('Inside MyController.default()')

shorten things up a bit for clarity
env_key = self.app.pargs.env
env = self.app.config.get_section_dict('env.%s' % env_key)

print('Current Environment: %s' % env_key)
print('Foo => %s' % env['foo'])

class MyApp(CementApp):
class Meta:

label = 'myapp'
config_defaults = defaults
base_controller = MyController

with MyApp() as app:

(continues on next page)

204 Chapter 3. Documentation

Cement Framework, Release 2.10.12

(continued from previous page)

app.hook.register('post_argument_parsing', set_default_env)
app.run()

myapp.conf

[myapp]
default_env = production

[env.production]
foo = bar.production

[env.staging]
foo = bar.staging

[env.dev]
foo = bar.dev

This looks like:

$ python myapp.py
Inside MyController.default()
Current Environment: production
Foo => bar.production

$ python myapp.py -E staging
Inside MyController.default()
Current Environment: staging
Foo => bar.staging

$ python myapp.py -E dev
Inside MyController.default()
Current Environment: dev
Foo => bar.dev

The idea being that you can maintain a single set of operations, but modify what or where those operations happen by
simply toggling the configuration section (that has the same configuration settings per environment).

3.10. Examples 205

Cement Framework, Release 2.10.12

206 Chapter 3. Documentation

Python Module Index

c
cement.core.arg, 29
cement.core.backend, 30
cement.core.cache, 30
cement.core.config, 32
cement.core.controller, 34
cement.core.exc, 38
cement.core.extension, 38
cement.core.foundation, 40
cement.core.handler, 49
cement.core.hook, 54
cement.core.interface, 57
cement.core.log, 57
cement.core.mail, 59
cement.core.meta, 61
cement.core.output, 61
cement.core.plugin, 63
cement.ext.ext_alarm, 70
cement.ext.ext_argcomplete, 71
cement.ext.ext_argparse, 73
cement.ext.ext_colorlog, 79
cement.ext.ext_configobj, 81
cement.ext.ext_configparser, 84
cement.ext.ext_daemon, 85
cement.ext.ext_dummy, 88
cement.ext.ext_genshi, 91
cement.ext.ext_handlebars, 94
cement.ext.ext_jinja2, 97
cement.ext.ext_json, 98
cement.ext.ext_json_configobj, 101
cement.ext.ext_logging, 102
cement.ext.ext_memcached, 105
cement.ext.ext_mustache, 108
cement.ext.ext_plugin, 110
cement.ext.ext_redis, 111
cement.ext.ext_reload_config, 114
cement.ext.ext_smtp, 117
cement.ext.ext_tabulate, 120
cement.ext.ext_watchdog, 125

cement.ext.ext_yaml, 121
cement.ext.ext_yaml_configobj, 123
cement.utils.fs, 64
cement.utils.misc, 68
cement.utils.shell, 64
cement.utils.test, 69

207

Cement Framework, Release 2.10.12

208 Python Module Index

Index

Symbols
_config() (cement.ext.ext_memcached.MemcachedCacheHandler

method), 107
_config() (cement.ext.ext_redis.RedisCacheHandler

method), 113
_dispatch() (cement.core.controller.CementBaseController

method), 36
_dispatch() (cement.core.controller.IController method),

37
_fix_hosts() (cement.ext.ext_memcached.MemcachedCacheHandler

method), 107
_help_text (cement.core.controller.CementBaseController

attribute), 36
_lay_cement() (cement.core.foundation.CementApp

method), 46
_load_plugin_from_bootstrap() (ce-

ment.ext.ext_plugin.CementPluginHandler
method), 110

_load_plugin_from_dir() (ce-
ment.ext.ext_plugin.CementPluginHandler
method), 111

_parse_file() (cement.core.config.CementConfigHandler
method), 32

_parse_file() (cement.ext.ext_configobj.ConfigObjConfigHandler
method), 82

_parse_file() (cement.ext.ext_configparser.ConfigParserConfigHandler
method), 84

_parse_file() (cement.ext.ext_json.JsonConfigHandler
method), 100

_parse_file() (cement.ext.ext_json_configobj.JsonConfigObjConfigHandler
method), 102

_parse_file() (cement.ext.ext_yaml.YamlConfigHandler
method), 122

_parse_file() (cement.ext.ext_yaml_configobj.YamlConfigObjConfigHandler
method), 124

_post_argument_parsing() (ce-
ment.ext.ext_argparse.ArgparseController
method), 78

_pre_argument_parsing() (ce-

ment.ext.ext_argparse.ArgparseController
method), 78

_setup() (cement.core.arg.IArgument method), 30
_setup() (cement.core.cache.ICache method), 31
_setup() (cement.core.config.IConfig method), 33
_setup() (cement.core.controller.CementBaseController

method), 36
_setup() (cement.core.controller.IController method), 37
_setup() (cement.core.extension.IExtension method), 39
_setup() (cement.core.handler.CementBaseHandler

method), 49
_setup() (cement.core.log.ILog method), 58
_setup() (cement.core.mail.CementMailHandler method),

59
_setup() (cement.core.mail.IMail method), 60
_setup() (cement.core.output.IOutput method), 62
_setup() (cement.core.plugin.IPlugin method), 63
_setup() (cement.ext.ext_argparse.ArgparseController

method), 78
_setup() (cement.ext.ext_configobj.ConfigObjConfigHandler

method), 82
_setup() (cement.ext.ext_handlebars.HandlebarsOutputHandler

method), 96
_setup() (cement.ext.ext_json.JsonConfigHandler

method), 100
_setup() (cement.ext.ext_json.JsonOutputHandler

method), 100
_setup() (cement.ext.ext_json_configobj.JsonConfigObjConfigHandler

method), 102
_setup() (cement.ext.ext_logging.LoggingLogHandler

method), 104
_setup() (cement.ext.ext_memcached.MemcachedCacheHandler

method), 107
_setup() (cement.ext.ext_plugin.CementPluginHandler

method), 111
_setup() (cement.ext.ext_redis.RedisCacheHandler

method), 113
_setup() (cement.ext.ext_yaml.YamlOutputHandler

method), 123
_setup_console_log() (ce-

209

Cement Framework, Release 2.10.12

ment.ext.ext_logging.LoggingLogHandler
method), 104

_setup_file_log() (cement.ext.ext_logging.LoggingLogHandler
method), 104

_usage_text (cement.core.controller.CementBaseController
attribute), 36

_write_pid_file() (cement.ext.ext_daemon.Environment
method), 88

A
abspath() (in module cement.utils.fs), 64
add() (cement.ext.ext_watchdog.WatchdogManager

method), 128
add_arg() (cement.core.foundation.CementApp method),

46
add_argument() (cement.core.arg.IArgument method), 30
add_argument() (cement.ext.ext_argparse.ArgparseArgumentHandler

method), 76
add_handler_override_options() (in module ce-

ment.core.foundation), 48
add_section() (cement.core.config.IConfig method), 33
add_section() (cement.ext.ext_configobj.ConfigObjConfigHandler

method), 82
add_section() (cement.ext.ext_configparser.ConfigParserConfigHandler

method), 84
add_template_dir() (cement.core.foundation.CementApp

method), 46
AlarmManager (class in cement.ext.ext_alarm), 71
aliases (cement.core.controller.CementBaseController.Meta

attribute), 35
aliases (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 76
aliases_only (cement.core.controller.CementBaseController.Meta

attribute), 35
alternative_module_mapping (ce-

ment.core.foundation.CementApp.Meta at-
tribute), 40

app_class (cement.utils.test.CementTestCase attribute),
69

ArgParseArgumentHandler (class in ce-
ment.ext.ext_argparse), 75

ArgparseArgumentHandler (class in ce-
ment.ext.ext_argparse), 75

ArgparseArgumentHandler.Meta (class in ce-
ment.ext.ext_argparse), 75

ArgparseController (class in cement.ext.ext_argparse), 76
ArgparseController.Meta (class in ce-

ment.ext.ext_argparse), 76
argument_formatter (ce-

ment.core.controller.CementBaseController.Meta
attribute), 35

argument_handler (cement.core.foundation.CementApp.Meta
attribute), 41

argument_validator() (in module cement.core.arg), 30

arguments (cement.core.controller.CementBaseController.Meta
attribute), 35

arguments (cement.ext.ext_argparse.ArgparseController.Meta
attribute), 77

arguments_override_config (ce-
ment.core.foundation.CementApp.Meta at-
tribute), 41

argv (cement.core.foundation.CementApp attribute), 46
argv (cement.core.foundation.CementApp.Meta at-

tribute), 41
Attribute (class in cement.core.interface), 57
auto (cement.utils.shell.Prompt.Meta attribute), 65

B
backup() (in module cement.utils.fs), 64
base_controller (cement.core.foundation.CementApp.Meta

attribute), 41
bootstrap (cement.core.foundation.CementApp.Meta at-

tribute), 41

C
cache_handler (cement.core.foundation.CementApp.Meta

attribute), 41
cache_validator() (in module cement.core.cache), 32
case_insensitive (cement.utils.shell.Prompt.Meta at-

tribute), 65
catch_signal() (cement.core.foundation.CementApp

method), 46
catch_signals (cement.core.foundation.CementApp.Meta

attribute), 41
CaughtSignal, 38
cement.core.arg (module), 29
cement.core.backend (module), 30
cement.core.cache (module), 30
cement.core.config (module), 32
cement.core.controller (module), 34
cement.core.exc (module), 38
cement.core.extension (module), 38
cement.core.foundation (module), 40
cement.core.handler (module), 49
cement.core.hook (module), 54
cement.core.interface (module), 57
cement.core.log (module), 57
cement.core.mail (module), 59
cement.core.meta (module), 61
cement.core.output (module), 61
cement.core.plugin (module), 63
cement.ext.ext_alarm (module), 70
cement.ext.ext_argcomplete (module), 71
cement.ext.ext_argparse (module), 73
cement.ext.ext_colorlog (module), 79
cement.ext.ext_configobj (module), 81
cement.ext.ext_configparser (module), 84
cement.ext.ext_daemon (module), 85

210 Index

Cement Framework, Release 2.10.12

cement.ext.ext_dummy (module), 88
cement.ext.ext_genshi (module), 91
cement.ext.ext_handlebars (module), 94
cement.ext.ext_jinja2 (module), 97
cement.ext.ext_json (module), 98
cement.ext.ext_json_configobj (module), 101
cement.ext.ext_logging (module), 102
cement.ext.ext_memcached (module), 105
cement.ext.ext_mustache (module), 108
cement.ext.ext_plugin (module), 110
cement.ext.ext_redis (module), 111
cement.ext.ext_reload_config (module), 114
cement.ext.ext_smtp (module), 117
cement.ext.ext_tabulate (module), 120
cement.ext.ext_watchdog (module), 125
cement.ext.ext_yaml (module), 121
cement.ext.ext_yaml_configobj (module), 123
cement.utils.fs (module), 64
cement.utils.misc (module), 68
cement.utils.shell (module), 64
cement.utils.test (module), 69
cement_signal_handler() (in module ce-

ment.core.foundation), 48
CementApp (class in cement.core.foundation), 40
CementApp.Meta (class in cement.core.foundation), 40
CementArgumentHandler (class in cement.core.arg), 29
CementArgumentHandler.Meta (class in ce-

ment.core.arg), 29
CementBaseController (class in cement.core.controller),

34
CementBaseController.Meta (class in ce-

ment.core.controller), 35
CementBaseHandler (class in cement.core.handler), 49
CementBaseHandler.Meta (class in cement.core.handler),

49
CementCacheHandler (class in cement.core.cache), 30
CementCacheHandler.Meta (class in cement.core.cache),

30
CementConfigHandler (class in cement.core.config), 32
CementConfigHandler.Meta (class in ce-

ment.core.config), 32
CementCoreTestCase (class in cement.utils.test), 69
CementExtensionHandler (class in ce-

ment.core.extension), 38
CementExtensionHandler.Meta (class in ce-

ment.core.extension), 38
CementExtTestCase (class in cement.utils.test), 69
CementLogHandler (class in cement.core.log), 57
CementLogHandler.Meta (class in cement.core.log), 58
CementMailHandler (class in cement.core.mail), 59
CementMailHandler.Meta (class in cement.core.mail), 59
CementOutputHandler (class in cement.core.output), 61
CementOutputHandler.Meta (class in ce-

ment.core.output), 61

CementPluginHandler (class in cement.core.plugin), 63
CementPluginHandler (class in cement.ext.ext_plugin),

110
CementPluginHandler.Meta (class in ce-

ment.core.plugin), 63
CementPluginHandler.Meta (class in ce-

ment.ext.ext_plugin), 110
CementTestCase (class in cement.utils.test), 69
cleanup() (in module cement.ext.ext_daemon), 88
clear (cement.utils.shell.Prompt.Meta attribute), 65
clear_command (cement.utils.shell.Prompt.Meta at-

tribute), 66
clear_loggers (cement.ext.ext_logging.LoggingLogHandler.Meta

attribute), 103
clear_loggers() (cement.ext.ext_logging.LoggingLogHandler

method), 104
close() (cement.core.foundation.CementApp method), 46
ColorLogHandler (class in cement.ext.ext_colorlog), 81
ColorLogHandler.Meta (class in ce-

ment.ext.ext_colorlog), 81
colors (cement.ext.ext_colorlog.ColorLogHandler.Meta

attribute), 81
config_defaults (cement.core.controller.CementBaseController.Meta

attribute), 36
config_defaults (cement.core.foundation.CementApp.Meta

attribute), 42
config_defaults (cement.core.handler.CementBaseHandler.Meta

attribute), 49
config_defaults (cement.core.mail.CementMailHandler.Meta

attribute), 59
config_defaults (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
config_defaults (cement.ext.ext_colorlog.ColorLogHandler.Meta

attribute), 81
config_defaults (cement.ext.ext_logging.LoggingLogHandler.Meta

attribute), 103
config_defaults (cement.ext.ext_smtp.SMTPMailHandler.Meta

attribute), 119
config_extension (cement.core.foundation.CementApp.Meta

attribute), 42
config_files (cement.core.foundation.CementApp.Meta

attribute), 42
config_handler (cement.core.foundation.CementApp.Meta

attribute), 42
config_section (cement.core.controller.CementBaseController.Meta

attribute), 36
config_section (cement.core.foundation.CementApp.Meta

attribute), 42
config_section (cement.core.handler.CementBaseHandler.Meta

attribute), 49
config_section (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
config_validator() (in module cement.core.config), 34
ConfigObjConfigHandler (class in ce-

Index 211

Cement Framework, Release 2.10.12

ment.ext.ext_configobj), 82
ConfigObjConfigHandler.Meta (class in ce-

ment.ext.ext_configobj), 82
ConfigParserConfigHandler (class in ce-

ment.ext.ext_configparser), 84
ConfigParserConfigHandler.Meta (class in ce-

ment.ext.ext_configparser), 84
console_format (cement.ext.ext_logging.LoggingLogHandler.Meta

attribute), 103
controller_validator() (in module cement.core.controller),

37
core_extensions (cement.core.foundation.CementApp.Meta

attribute), 42
core_handler_override_options (ce-

ment.core.foundation.CementApp.Meta at-
tribute), 42

core_meta_override (ce-
ment.core.foundation.CementApp.Meta at-
tribute), 42

D
daemonize() (cement.ext.ext_daemon.Environment

method), 88
daemonize() (in module cement.ext.ext_daemon), 88
debug (cement.core.foundation.CementApp attribute), 46
debug (cement.core.foundation.CementApp.Meta at-

tribute), 42
debug() (cement.core.log.ILog method), 58
debug() (cement.ext.ext_logging.LoggingLogHandler

method), 104
debug_format (cement.ext.ext_logging.LoggingLogHandler.Meta

attribute), 103
default (cement.utils.shell.Prompt.Meta attribute), 66
default_func (cement.core.controller.CementBaseController.Meta

attribute), 36
default_func (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
define() (cement.core.handler.HandlerManager method),

49
define() (cement.core.hook.HookManager method), 54
define() (in module cement.core.handler), 52
define() (in module cement.core.hook), 55
define_handlers (cement.core.foundation.CementApp.Meta

attribute), 42
define_hooks (cement.core.foundation.CementApp.Meta

attribute), 42
defined() (cement.core.handler.HandlerManager method),

49
defined() (cement.core.hook.HookManager method), 54
defined() (in module cement.core.handler), 52
defined() (in module cement.core.hook), 56
delete() (cement.core.cache.ICache method), 31
delete() (cement.ext.ext_memcached.MemcachedCacheHandler

method), 107

delete() (cement.ext.ext_redis.RedisCacheHandler
method), 113

description (cement.core.controller.CementBaseController.Meta
attribute), 36

description (cement.ext.ext_argparse.ArgparseController.Meta
attribute), 77

DummyMailHandler (class in cement.ext.ext_dummy),
89

DummyMailHandler.Meta (class in ce-
ment.ext.ext_dummy), 90

DummyOutputHandler (class in cement.ext.ext_dummy),
91

DummyOutputHandler.Meta (class in ce-
ment.ext.ext_dummy), 91

E
Environment (class in cement.ext.ext_daemon), 87
epilog (cement.core.controller.CementBaseController.Meta

attribute), 36
epilog (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
eq() (cement.utils.test.CementTestCase method), 69
eq() (in module cement.utils.test), 70
error() (cement.core.log.ILog method), 58
error() (cement.ext.ext_logging.LoggingLogHandler

method), 104
exec_cmd() (in module cement.utils.shell), 66
exec_cmd2() (in module cement.utils.shell), 66
exit_on_close (cement.core.foundation.CementApp.Meta

attribute), 43
expose (class in cement.core.controller), 37
expose (class in cement.ext.ext_argparse), 78
extend() (cement.core.foundation.CementApp method),

47
extend_app() (in module cement.ext.ext_daemon), 88
extension_handler (cement.core.foundation.CementApp.Meta

attribute), 43
extension_validator() (in module cement.core.extension),

39
extensions (cement.core.foundation.CementApp.Meta at-

tribute), 43

F
fatal() (cement.core.log.ILog method), 58
fatal() (cement.ext.ext_logging.LoggingLogHandler

method), 104
file_format (cement.ext.ext_logging.LoggingLogHandler.Meta

attribute), 104
float_format (cement.ext.ext_tabulate.TabulateOutputHandler.Meta

attribute), 121
format (cement.ext.ext_tabulate.TabulateOutputHandler.Meta

attribute), 121
formatter_class (cement.ext.ext_colorlog.ColorLogHandler.Meta

attribute), 81

212 Index

Cement Framework, Release 2.10.12

formatter_class (cement.ext.ext_logging.LoggingLogHandler.Meta
attribute), 104

formatter_class_without_color (ce-
ment.ext.ext_colorlog.ColorLogHandler.Meta
attribute), 81

framework_logging (ce-
ment.core.foundation.CementApp.Meta at-
tribute), 43

FrameworkError, 38

G
GenshiOutputHandler (class in cement.ext.ext_genshi),

92
GenshiOutputHandler.Meta (class in ce-

ment.ext.ext_genshi), 92
get() (cement.core.cache.ICache method), 31
get() (cement.core.config.IConfig method), 33
get() (cement.core.handler.HandlerManager method), 50
get() (cement.ext.ext_configobj.ConfigObjConfigHandler

method), 83
get() (cement.ext.ext_memcached.MemcachedCacheHandler

method), 107
get() (cement.ext.ext_redis.RedisCacheHandler method),

113
get() (in module cement.core.handler), 52
get_disabled_plugins() (cement.core.plugin.IPlugin

method), 63
get_disabled_plugins() (ce-

ment.ext.ext_plugin.CementPluginHandler
method), 111

get_enabled_plugins() (cement.core.plugin.IPlugin
method), 63

get_enabled_plugins() (ce-
ment.ext.ext_plugin.CementPluginHandler
method), 111

get_last_rendered() (cement.core.foundation.CementApp
method), 47

get_level() (cement.core.log.ILog method), 58
get_level() (cement.ext.ext_logging.LoggingLogHandler

method), 105
get_loaded_extensions() (ce-

ment.core.extension.CementExtensionHandler
method), 38

get_loaded_plugins() (cement.core.plugin.IPlugin
method), 63

get_loaded_plugins() (ce-
ment.ext.ext_plugin.CementPluginHandler
method), 111

get_section_dict() (cement.core.config.IConfig method),
33

get_section_dict() (cement.ext.ext_configobj.ConfigObjConfigHandler
method), 83

get_section_dict() (cement.ext.ext_configparser.ConfigParserConfigHandler
method), 84

get_sections() (cement.core.config.IConfig method), 33
get_sections() (cement.ext.ext_configobj.ConfigObjConfigHandler

method), 83
get_sections() (cement.ext.ext_configparser.ConfigParserConfigHandler

method), 85

H
HandlebarsOutputHandler (class in ce-

ment.ext.ext_handlebars), 96
HandlebarsOutputHandler.Meta (class in ce-

ment.ext.ext_handlebars), 96
handler_override() (in module cement.core.foundation),

48
handler_override_options (ce-

ment.core.foundation.CementApp.Meta at-
tribute), 43

HandlerManager (class in cement.core.handler), 49
handlers (cement.core.foundation.CementApp.Meta at-

tribute), 43
has_section() (cement.core.config.IConfig method), 34
has_section() (cement.ext.ext_configobj.ConfigObjConfigHandler

method), 83
headers (cement.ext.ext_tabulate.TabulateOutputHandler.Meta

attribute), 121
help (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
helpers (cement.ext.ext_handlebars.HandlebarsOutputHandler.Meta

attribute), 96
hide (cement.core.controller.CementBaseController.Meta

attribute), 36
hide (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
HookManager (class in cement.core.hook), 54
hooks (cement.core.foundation.CementApp.Meta at-

tribute), 43

I
IArgument (class in cement.core.arg), 29
IArgument.IMeta (class in cement.core.arg), 29
ICache (class in cement.core.cache), 31
ICache.IMeta (class in cement.core.cache), 31
IConfig (class in cement.core.config), 32
IConfig.IMeta (class in cement.core.config), 33
IController (class in cement.core.controller), 36
IController.IMeta (class in cement.core.controller), 37
IExtension (class in cement.core.extension), 39
IExtension.IMeta (class in cement.core.extension), 39
ignore_deprecation_warnings (ce-

ment.core.foundation.CementApp.Meta at-
tribute), 43

ignore_unknown_arguments (ce-
ment.ext.ext_argparse.ArgparseArgumentHandler.Meta
attribute), 75

ILog (class in cement.core.log), 58

Index 213

Cement Framework, Release 2.10.12

ILog.IMeta (class in cement.core.log), 58
IMail (class in cement.core.mail), 59
IMail.IMeta (class in cement.core.mail), 60
info() (cement.core.log.ILog method), 59
info() (cement.ext.ext_logging.LoggingLogHandler

method), 105
init_defaults() (in module cement.utils.misc), 68
interface (cement.core.arg.CementArgumentHandler.Meta

attribute), 29
interface (cement.core.cache.CementCacheHandler.Meta

attribute), 30
interface (cement.core.config.CementConfigHandler.Meta

attribute), 32
interface (cement.core.controller.CementBaseController.Meta

attribute), 36
interface (cement.core.extension.CementExtensionHandler.Meta

attribute), 38
interface (cement.core.handler.CementBaseHandler.Meta

attribute), 49
interface (cement.core.log.CementLogHandler.Meta at-

tribute), 58
interface (cement.core.mail.CementMailHandler.Meta at-

tribute), 59
interface (cement.core.output.CementOutputHandler.Meta

attribute), 61
interface (cement.core.plugin.CementPluginHandler.Meta

attribute), 63
interface (cement.ext.ext_argparse.ArgparseArgumentHandler.Meta

attribute), 76
interface (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
interface (cement.ext.ext_configobj.ConfigObjConfigHandler.Meta

attribute), 82
interface (cement.ext.ext_configparser.ConfigParserConfigHandler.Meta

attribute), 84
interface (cement.ext.ext_dummy.DummyOutputHandler.Meta

attribute), 91
interface (cement.ext.ext_genshi.GenshiOutputHandler.Meta

attribute), 92
interface (cement.ext.ext_handlebars.HandlebarsOutputHandler.Meta

attribute), 96
interface (cement.ext.ext_jinja2.Jinja2OutputHandler.Meta

attribute), 98
interface (cement.ext.ext_json.JsonOutputHandler.Meta

attribute), 100
interface (cement.ext.ext_logging.LoggingLogHandler.Meta

attribute), 104
interface (cement.ext.ext_memcached.MemcachedCacheHandler.Meta

attribute), 107
interface (cement.ext.ext_mustache.MustacheOutputHandler.Meta

attribute), 109
interface (cement.ext.ext_plugin.CementPluginHandler.Meta

attribute), 110
interface (cement.ext.ext_redis.RedisCacheHandler.Meta

attribute), 113
interface (cement.ext.ext_tabulate.TabulateOutputHandler.Meta

attribute), 121
interface (cement.ext.ext_yaml.YamlOutputHandler.Meta

attribute), 123
Interface (class in cement.core.interface), 57
InterfaceError, 38
IOutput (class in cement.core.output), 61
IOutput.IMeta (class in cement.core.output), 62
IPlugin (class in cement.core.plugin), 63
is_true() (in module cement.utils.misc), 68

J
Jinja2OutputHandler (class in cement.ext.ext_jinja2), 98
Jinja2OutputHandler.Meta (class in ce-

ment.ext.ext_jinja2), 98
join() (cement.ext.ext_watchdog.WatchdogManager

method), 128
json_module (cement.ext.ext_json.JsonConfigHandler.Meta

attribute), 99
json_module (cement.ext.ext_json.JsonOutputHandler.Meta

attribute), 100
json_module (cement.ext.ext_json_configobj.JsonConfigObjConfigHandler.Meta

attribute), 102
JsonConfigHandler (class in cement.ext.ext_json), 99
JsonConfigHandler.Meta (class in cement.ext.ext_json),

99
JsonConfigObjConfigHandler (class in ce-

ment.ext.ext_json_configobj), 102
JsonConfigObjConfigHandler.Meta (class in ce-

ment.ext.ext_json_configobj), 102
JsonOutputHandler (class in cement.ext.ext_json), 100
JsonOutputHandler.Meta (class in cement.ext.ext_json),

100

K
keys() (cement.core.config.IConfig method), 34
keys() (cement.ext.ext_configobj.ConfigObjConfigHandler

method), 83
keys() (cement.ext.ext_configparser.ConfigParserConfigHandler

method), 85

L
label (cement.core.arg.CementArgumentHandler.Meta at-

tribute), 29
label (cement.core.arg.IArgument.IMeta attribute), 29
label (cement.core.cache.CementCacheHandler.Meta at-

tribute), 31
label (cement.core.cache.ICache.IMeta attribute), 31
label (cement.core.config.CementConfigHandler.Meta at-

tribute), 32
label (cement.core.config.IConfig.IMeta attribute), 33
label (cement.core.controller.CementBaseController.Meta

attribute), 36

214 Index

Cement Framework, Release 2.10.12

label (cement.core.controller.IController.IMeta attribute),
37

label (cement.core.extension.CementExtensionHandler.Meta
attribute), 38

label (cement.core.extension.IExtension.IMeta attribute),
39

label (cement.core.foundation.CementApp.Meta at-
tribute), 43

label (cement.core.handler.CementBaseHandler.Meta at-
tribute), 49

label (cement.core.log.CementLogHandler.Meta at-
tribute), 58

label (cement.core.log.ILog.IMeta attribute), 58
label (cement.core.mail.CementMailHandler.Meta

attribute), 59
label (cement.core.mail.IMail.IMeta attribute), 60
label (cement.core.output.CementOutputHandler.Meta at-

tribute), 61
label (cement.core.output.IOutput.IMeta attribute), 62
label (cement.core.plugin.CementPluginHandler.Meta at-

tribute), 63
label (cement.ext.ext_argparse.ArgparseArgumentHandler.Meta

attribute), 76
label (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
label (cement.ext.ext_colorlog.ColorLogHandler.Meta at-

tribute), 81
label (cement.ext.ext_configparser.ConfigParserConfigHandler.Meta

attribute), 84
label (cement.ext.ext_dummy.DummyMailHandler.Meta

attribute), 90
label (cement.ext.ext_dummy.DummyOutputHandler.Meta

attribute), 91
label (cement.ext.ext_json.JsonOutputHandler.Meta at-

tribute), 100
label (cement.ext.ext_json_configobj.JsonConfigObjConfigHandler.Meta

attribute), 102
label (cement.ext.ext_logging.LoggingLogHandler.Meta

attribute), 104
label (cement.ext.ext_plugin.CementPluginHandler.Meta

attribute), 110
label (cement.ext.ext_smtp.SMTPMailHandler.Meta at-

tribute), 119
last_rendered (cement.core.foundation.CementApp at-

tribute), 47
list() (cement.core.handler.HandlerManager method), 50
list() (in module cement.core.handler), 53
list() (in module cement.core.interface), 57
list_types() (cement.core.handler.HandlerManager

method), 50
load_extension() (cement.core.extension.CementExtensionHandler

method), 39
load_extension() (cement.core.extension.IExtension

method), 39

load_extensions() (cement.core.extension.CementExtensionHandler
method), 39

load_extensions() (cement.core.extension.IExtension
method), 39

load_plugin() (cement.core.plugin.IPlugin method), 63
load_plugin() (cement.ext.ext_plugin.CementPluginHandler

method), 111
load_plugins() (cement.core.plugin.IPlugin method), 63
load_plugins() (cement.ext.ext_plugin.CementPluginHandler

method), 111
load_template() (cement.core.output.TemplateOutputHandler

method), 62
load_template_with_location() (ce-

ment.core.output.TemplateOutputHandler
method), 62

log_handler (cement.core.foundation.CementApp.Meta
attribute), 44

log_validator() (in module cement.core.log), 59
LoggingLogHandler (class in cement.ext.ext_logging),

103
LoggingLogHandler.Meta (class in ce-

ment.ext.ext_logging), 103

M
mail_handler (cement.core.foundation.CementApp.Meta

attribute), 44
mail_validator() (in module cement.core.mail), 61
make_app() (cement.utils.test.CementTestCase method),

69
max_attempts (cement.utils.shell.Prompt.Meta attribute),

66
max_attempts_exception (ce-

ment.utils.shell.Prompt.Meta attribute), 66
MemcachedCacheHandler (class in ce-

ment.ext.ext_memcached), 107
MemcachedCacheHandler.Meta (class in ce-

ment.ext.ext_memcached), 107
merge() (cement.core.config.IConfig method), 34
merge() (cement.ext.ext_configobj.ConfigObjConfigHandler

method), 83
merge() (cement.ext.ext_configparser.ConfigParserConfigHandler

method), 85
Meta (class in cement.core.meta), 61
meta_defaults (cement.core.foundation.CementApp.Meta

attribute), 44
meta_override (cement.core.foundation.CementApp.Meta

attribute), 44
MetaMixin (class in cement.core.meta), 61
minimal_logger() (in module cement.utils.misc), 68
missing_value (cement.ext.ext_tabulate.TabulateOutputHandler.Meta

attribute), 121
MustacheOutputHandler (class in ce-

ment.ext.ext_mustache), 109

Index 215

Cement Framework, Release 2.10.12

MustacheOutputHandler.Meta (class in ce-
ment.ext.ext_mustache), 109

N
namespace (cement.ext.ext_logging.LoggingLogHandler.Meta

attribute), 104
numbered (cement.utils.shell.Prompt.Meta attribute), 66
numeric_alignment (ce-

ment.ext.ext_tabulate.TabulateOutputHandler.Meta
attribute), 121

O
ok() (cement.utils.test.CementTestCase method), 69
ok() (in module cement.utils.test), 70
on_any_event() (cement.ext.ext_watchdog.WatchdogEventHandler

method), 128
options (cement.utils.shell.Prompt.Meta attribute), 66
options_separator (cement.utils.shell.Prompt.Meta

attribute), 66
output_handler (cement.core.foundation.CementApp.Meta

attribute), 44
output_validator() (in module cement.core.output), 62
overridable (cement.core.handler.CementBaseHandler.Meta

attribute), 49
overridable (cement.ext.ext_dummy.DummyOutputHandler.Meta

attribute), 91
overridable (cement.ext.ext_handlebars.HandlebarsOutputHandler.Meta

attribute), 96
overridable (cement.ext.ext_json.JsonOutputHandler.Meta

attribute), 100
overridable (cement.ext.ext_mustache.MustacheOutputHandler.Meta

attribute), 109
overridable (cement.ext.ext_tabulate.TabulateOutputHandler.Meta

attribute), 121
overridable (cement.ext.ext_yaml.YamlOutputHandler.Meta

attribute), 123
override_arguments (ce-

ment.core.foundation.CementApp.Meta at-
tribute), 44

P
padding (cement.ext.ext_tabulate.TabulateOutputHandler.Meta

attribute), 121
pargs (cement.core.foundation.CementApp attribute), 47
parse() (cement.core.arg.IArgument method), 30
parse() (cement.ext.ext_argparse.ArgparseArgumentHandler

method), 76
parse_file() (cement.core.config.CementConfigHandler

method), 32
parse_file() (cement.core.config.IConfig method), 34
parser_options (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
partials (cement.ext.ext_handlebars.HandlebarsOutputHandler.Meta

attribute), 96

plugin_bootstrap (cement.core.foundation.CementApp.Meta
attribute), 44

plugin_config_dir (cement.core.foundation.CementApp.Meta
attribute), 44

plugin_config_dirs (ce-
ment.core.foundation.CementApp.Meta at-
tribute), 45

plugin_dir (cement.core.foundation.CementApp.Meta at-
tribute), 45

plugin_dirs (cement.core.foundation.CementApp.Meta
attribute), 45

plugin_handler (cement.core.foundation.CementApp.Meta
attribute), 45

plugin_validator() (in module cement.core.plugin), 64
plugins (cement.core.foundation.CementApp.Meta

attribute), 45
process_input() (cement.utils.shell.Prompt method), 66
Prompt (class in cement.utils.shell), 64
prompt() (cement.utils.shell.Prompt method), 66
Prompt.Meta (class in cement.utils.shell), 65
purge() (cement.core.cache.ICache method), 31
purge() (cement.ext.ext_memcached.MemcachedCacheHandler

method), 108
purge() (cement.ext.ext_redis.RedisCacheHandler

method), 114

R
raises (class in cement.utils.test), 70
rando() (in module cement.utils.misc), 68
random() (in module cement.utils.misc), 69
RedisCacheHandler (class in cement.ext.ext_redis), 113
RedisCacheHandler.Meta (class in cement.ext.ext_redis),

113
register() (cement.core.handler.HandlerManager

method), 50
register() (cement.core.hook.HookManager method), 55
register() (in module cement.core.handler), 53
register() (in module cement.core.hook), 56
registered() (cement.core.handler.HandlerManager

method), 51
registered() (in module cement.core.handler), 53
reload() (cement.core.foundation.CementApp method),

47
remove_template_dir() (ce-

ment.core.foundation.CementApp method),
47

render() (cement.core.foundation.CementApp method),
47

render() (cement.core.output.IOutput method), 62
render() (cement.ext.ext_dummy.DummyOutputHandler

method), 91
render() (cement.ext.ext_genshi.GenshiOutputHandler

method), 92

216 Index

Cement Framework, Release 2.10.12

render() (cement.ext.ext_handlebars.HandlebarsOutputHandler
method), 96

render() (cement.ext.ext_jinja2.Jinja2OutputHandler
method), 98

render() (cement.ext.ext_json.JsonOutputHandler
method), 100

render() (cement.ext.ext_mustache.MustacheOutputHandler
method), 110

render() (cement.ext.ext_tabulate.TabulateOutputHandler
method), 121

render() (cement.ext.ext_yaml.YamlOutputHandler
method), 123

reset_backend() (cement.utils.test.CementTestCase
method), 69

resolve() (cement.core.handler.HandlerManager method),
51

resolve() (in module cement.core.handler), 54
run() (cement.core.foundation.CementApp method), 47
run() (cement.core.hook.HookManager method), 55
run() (in module cement.core.hook), 56
run_forever() (cement.core.foundation.CementApp

method), 48

S
selection_text (cement.utils.shell.Prompt.Meta attribute),

66
send() (cement.core.mail.IMail method), 60
send() (cement.ext.ext_dummy.DummyMailHandler

method), 90
send() (cement.ext.ext_smtp.SMTPMailHandler

method), 119
set() (cement.core.cache.ICache method), 32
set() (cement.core.config.IConfig method), 34
set() (cement.ext.ext_alarm.AlarmManager method), 71
set() (cement.ext.ext_configobj.ConfigObjConfigHandler

method), 83
set() (cement.ext.ext_memcached.MemcachedCacheHandler

method), 108
set() (cement.ext.ext_redis.RedisCacheHandler method),

114
set_level() (cement.core.log.ILog method), 59
set_level() (cement.ext.ext_logging.LoggingLogHandler

method), 105
setup() (cement.core.foundation.CementApp method), 48
setUp() (cement.utils.test.CementTestCase method), 69
signal_handler() (cement.core.foundation.CementApp.Meta

method), 45
SMTPMailHandler (class in cement.ext.ext_smtp), 119
SMTPMailHandler.Meta (class in cement.ext.ext_smtp),

119
spawn_process() (in module cement.utils.shell), 67
spawn_thread() (in module cement.utils.shell), 67
stacked_on (cement.core.controller.CementBaseController.Meta

attribute), 36

stacked_on (cement.ext.ext_argparse.ArgparseController.Meta
attribute), 77

stacked_type (cement.core.controller.CementBaseController.Meta
attribute), 36

stacked_type (cement.ext.ext_argparse.ArgparseController.Meta
attribute), 77

start() (cement.ext.ext_watchdog.WatchdogManager
method), 128

stop() (cement.ext.ext_alarm.AlarmManager method), 71
stop() (cement.ext.ext_watchdog.WatchdogManager

method), 128
string_alignment (cement.ext.ext_tabulate.TabulateOutputHandler.Meta

attribute), 121
subparser_options (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 77
suppress_output_after_render() (in module ce-

ment.ext.ext_json), 101
suppress_output_after_render() (in module ce-

ment.ext.ext_yaml), 123
suppress_output_before_run() (in module ce-

ment.ext.ext_json), 101
suppress_output_before_run() (in module ce-

ment.ext.ext_yaml), 123
switch() (cement.ext.ext_daemon.Environment method),

88

T
TabulateOutputHandler (class in ce-

ment.ext.ext_tabulate), 120
TabulateOutputHandler.Meta (class in ce-

ment.ext.ext_tabulate), 120
tearDown() (cement.utils.test.CementTestCase method),

69
template_dir (cement.core.foundation.CementApp.Meta

attribute), 45
template_dirs (cement.core.foundation.CementApp.Meta

attribute), 45
template_module (cement.core.foundation.CementApp.Meta

attribute), 46
TemplateOutputHandler (class in cement.core.output), 62
TestApp (class in cement.utils.test), 70
title (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 78

U
unsuppress_output_before_render() (in module ce-

ment.ext.ext_json), 101
unsuppress_output_before_render() (in module ce-

ment.ext.ext_yaml), 123
usage (cement.core.controller.CementBaseController.Meta

attribute), 36
usage (cement.ext.ext_argparse.ArgparseController.Meta

attribute), 78

Index 217

Cement Framework, Release 2.10.12

use_backend_globals (ce-
ment.core.foundation.CementApp.Meta at-
tribute), 46

V
validate() (in module cement.core.interface), 57
validate_config() (cement.core.foundation.CementApp

method), 48
validator() (cement.core.arg.IArgument.IMeta method),

29
validator() (cement.core.cache.ICache.IMeta method), 31
validator() (cement.core.config.IConfig.IMeta method),

33
validator() (cement.core.controller.IController.IMeta

method), 37
validator() (cement.core.extension.IExtension.IMeta

method), 39
validator() (cement.core.log.ILog.IMeta method), 58
validator() (cement.core.mail.IMail.IMeta method), 60
validator() (cement.core.output.IOutput.IMeta method),

62

W
warn() (cement.ext.ext_logging.LoggingLogHandler

method), 105
warning() (cement.core.log.ILog method), 59
warning() (cement.ext.ext_logging.LoggingLogHandler

method), 105
WatchdogEventHandler (class in ce-

ment.ext.ext_watchdog), 128
WatchdogManager (class in cement.ext.ext_watchdog),

128
wrap() (in module cement.utils.misc), 69

Y
YamlConfigHandler (class in cement.ext.ext_yaml), 122
YamlConfigObjConfigHandler (class in ce-

ment.ext.ext_yaml_configobj), 124
YamlConfigObjConfigHandler.Meta (class in ce-

ment.ext.ext_yaml_configobj), 124
YamlOutputHandler (class in cement.ext.ext_yaml), 122
YamlOutputHandler.Meta (class in cement.ext.ext_yaml),

123

218 Index

	Getting More Information
	Mailing List
	Documentation
	Python Module Index

